

SPECIAL ARTICLE

Local and locoregional prostate cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up

J. Walz¹, G. Attard², A. Bjartell³, P. Blanchard⁴, E. Castro⁵, E. Compérat⁶, L. Emmett⁷, S. Fanti⁸, V. Fonteyne⁹, S. Foulon¹⁰, S. Gillessen^{11,12}, G. Gravis¹³, N. D. James¹⁴, D. E. Oprea-Lager¹⁵, P. Ost^{16,17}, A. Padhani¹⁸, C. Parker¹⁹, R. M. Renard-Penna²⁰, M. A. Rubin²¹, F. Saad²², C. Sweeney²³, D. Tilki^{24,25,26}, B. Tombal²⁷, A. C. Tree²⁸, T. Zilli^{12,29,30} & K. Fizazi^{31,32}, on behalf of the ESMO Guidelines Committee*

¹Department of Urology, Institut Paoli-Calmettes Cancer Center, Marseille, France; ²Research Department of Oncology, University College London, London, UK; ³Department of Urology, Skåne University Hospital, Malmö, Sweden; ⁴Department of Oncological Radiotherapy, Gustave Roussy, Université Paris Saclay, INSERM U1018 Oncostat, Villejuif, France; ⁵Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain; ⁶Department of Pathology, Medical University of Vienna, Vienna, Austria; ⁷Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; ⁸Department of Nuclear Medicine, AOU Policlinico Sant'Orsola-Malpighi, Bologna, Italy; ⁹Department of Radiation Oncology, Ghent University, Ghent, Belgium; ¹⁰Biostatistics and Epidemiology Department, Institut Gustave Roussy, Villejuif, France; ¹¹Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona; ¹²Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; ¹³Institut Paoli-Calmettes, Department of Medical Oncology, Aix Marseille University, INSERM, CNRS, CRCM, Immunity and Cancer Team, Marseille, France; ¹⁴Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK; ¹⁵Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; ¹⁶Department of Radiation Oncology, Iridium Network, Wilrijk; ¹⁷Department of Human Structure and Repair, Ghent University, Ghent, Belgium; ¹⁸Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood; ¹⁹Urology Unit, The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK; ²⁰Department of Imagery, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France; ²¹Department for Biomedical Research, University of Bern, Bern, Switzerland; ²²Department of Surgery and Urology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada; ²³South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia; ²⁴Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg; ²⁵Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; ²⁶Department of Urology, Koc University Hospital, Istanbul, Turkey; ²⁷Division of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; ²⁸Department of Radiotherapy, The Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK; ²⁹Department of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona; ³⁰Faculty of Medicine, University of Geneva, Geneva, Switzerland; ³¹Department of Medical Oncology, Centre Oscar Lambret, Lille; ³²Department of Oncology, University of Paris Saclay, Villejuif, France

Available online XXX

Key words: active surveillance, diagnosis, guideline, prostate cancer, prostatectomy, radiotherapy

INCIDENCE AND EPIDEMIOLOGY

Information on the incidence and epidemiology of prostate cancer and population screening is provided in **Supplementary Material Section 1**, available at <https://doi.org/10.1016/j.annonc.2025.12.009>.

Recommendations

- Population-based prostate-specific antigen (PSA) screening can be considered based on national risks and benefits but is associated with a risk of overdiagnosis [I, B].

DIAGNOSIS, PATHOLOGY AND MOLECULAR BIOLOGY

Diagnosis

Diagnosis of prostate cancer is primarily based on PSA testing, digital rectal examination (DRE) and imaging to select men for prostate biopsy. Moderately elevated PSA concentrations (3-10 ng/ml) have limited specificity for detection, indicating the need for more accurate biomarkers. PSA-density (PSA-D), derived from PSA level divided by prostate volume, can add value in predicting clinically significant disease.¹ Several blood (e.g. Prostate Health Index, 4K score, IsoPSA, Stockholm3, Proclarix) and urine (e.g. PCA3, SelectMDX, Mi Prostate score, ExoDX) tests have been developed, some of which have been incorporated into screening trials or programmes, or used in clinical settings to some extent.² These tests may be considered within risk-stratification pathways to reduce unnecessary prostate biopsy and overdiagnosis, but comparative studies are lacking. Magnetic resonance imaging (MRI) has become an important part of the diagnostic pathway for early detection of prostate cancer before

*Correspondence to: ESMO Guidelines Committee, ESMO Head Office, Via Ginevra 4, CH-6900 Lugano, Switzerland

E-mail: clinicalguidelines@esmo.org (ESMO Guidelines Committee).

☆Note: Approved by the ESMO Guidelines Committee: December 2025.

0923-7534/© 2025 European Society for Medical Oncology. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

biopsy, reducing the risk of overdiagnosis of indolent disease and facilitating accurate biopsy.³ Diagnostic work-up is shown in Figure 1.

The risk of clinically significant prostate cancer is related to age, ethnicity, family history, PSA level and results of DRE and imaging assessments.⁴ Predictive models or risk-stratified algorithms incorporating different clinical parameters (age, PSA level, PSA-D, family history, DRE findings, biomarkers, MRI) can facilitate optimal selection, improve prediction of clinically significant disease and reduce diagnosis of indolent tumours. One example is a risk calculator that was developed based on the European Randomized Study of Screening for Prostate Cancer and updated by incorporating prognostic pathology findings (Gleason score and cribriform growth pattern).⁵ It is important, however, that risk calculators are calibrated to the relevant population.

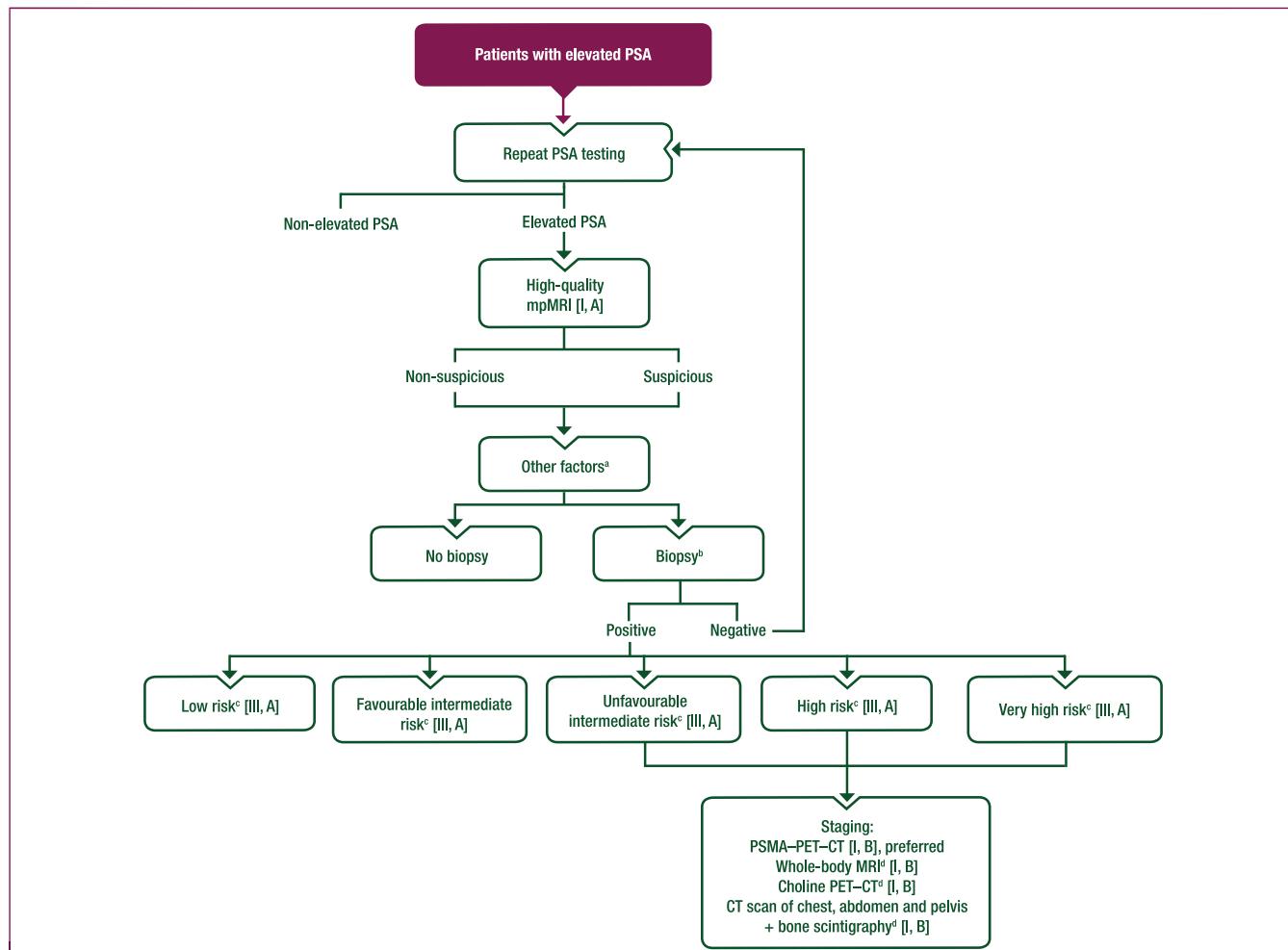
Imaging and biopsy

MRI is recommended before prostate biopsy (initial or repeat).⁶⁻⁸ Targeted biopsies have a higher detection rate for clinically significant prostate cancer and a decreased detection rate for clinically insignificant disease compared with systematic biopsies.^{6,7} The most common definition of clinically significant disease is the presence of International Society of Urological Pathology (ISUP) grade group ≥ 2 (or Gleason score $\geq 3 + 4$).^{6,7} In contrast to transrectal biopsy, transperineal biopsy results in fewer adverse events (AEs) relating to infection and sepsis; it can be carried out without antibiotic prophylaxis,⁹ thus aligning with the important issue of antibiotic stewardship.¹⁰ When MRI is positive [i.e. Prostate Imaging Reporting and Data System (PI-RADS) ≥ 4], both targeted and systematic biopsies are required if a high reliability for diagnosis of clinically significant disease is a priority.⁷ If reducing the detection of clinically insignificant disease is a priority, targeted biopsy without systematic biopsy may be sufficient.^{6,11}

Perilesional sampling of the MRI lesion improves detection of clinically significant disease. If MRI is equivocal (PI-RADS 3), biopsy should be carried out if there is a high suspicion of prostate cancer (e.g. high PSA, positive DRE, positive family history) or if PSA-D is >0.15 .¹¹ In other cases, biopsy may be omitted based on shared decision making with the patient. High-quality imaging and expertise are mandatory for MRI and biopsy procedures. When multiparametric MRI is of good quality and negative (i.e. PI-RADS ≤ 2) and clinical suspicion of prostate cancer is low, then biopsy may be omitted, taking the individual risk strata and preferences of the patient into account. PSA-D can help to risk stratify patients with a negative MRI for further diagnostic work-up following a non-suspicious MRI result. PSA-D $>0.15-0.2$ signals a higher risk of missed significant prostate cancer in patients with normal MRI findings.¹² In patients at high risk of locally advanced or metastatic disease when systematic biopsy will likely be diagnostic, MRI should not delay diagnosis and treatment; systematic biopsy can be sufficient in these cases.

High-resolution ultrasound (US) based on a 29 MHz transducer can be an alternative to MRI for diagnosis. In a randomised controlled trial (RCT) of 678 patients, high-resolution US-guided biopsies were non-inferior to MRI fusion-guided biopsies for diagnosis of clinically significant prostate cancer (ISUP >2).¹³ The detection rate with high-resolution US biopsy was 46% versus 43% with MRI fusion biopsy [difference 3.52%, 95% confidence interval (CI) -3.95% to 10.92% , non-inferiority $P < 0.001$]. The need for high-quality imaging and expertise also applies to high-resolution US imaging.¹³

Pathology


Biopsy cores should be submitted for histopathological analysis separately, and labelled to confirm the location in the prostate and their targeted or systematic nature.¹⁴ Reports following ISUP grading should include core length, cancer core involvement, Gleason pattern and score and presence of cribriform, intraductal or neuroendocrine subtypes.¹⁴

Molecular biology

Inherited mutations in *BRCA1* and/or *BRCA2* predispose to the development and aggressiveness of prostate cancer;¹⁵ however, germline testing is not routine clinical practice and is generally reserved for patients with *de novo* metastatic prostate cancer or a family history of breast, ovarian, pancreatic and/or high-risk prostate cancer, and for relatives of patients diagnosed with prostate cancer at a young age. The association of other genes (e.g. *ATM*, *CHEK2*, Lynch syndrome-associated genes) with prostate cancer aggressiveness is controversial. PSA testing every 2-4 years may be considered in individuals aged ≥ 40 years who carry germline mutations that could increase prostate cancer risk. More studies are needed to understand the possible role of polygenic risk scores in screening and early detection pathways.

Recommendations

- Men with sufficient life expectancy (≥ 10 years) seeking PSA testing can be offered shared decision making, including education about the benefits and harms of early detection, with the decision based on their values and preferences [I, B].
- PSA testing cannot be recommended for asymptomatic men with a life expectancy of <10 years [I, D].
- Early detection based on PSA testing and MRI can be recommended for men at high risk of death from prostate cancer, as follows [III, B]:
 - age ≥ 50 years and sufficient life expectancy (≥ 10 years)
 - age ≥ 45 years with a family history of prostate cancer
 - age ≥ 45 years and of Black African ancestry
 - age ≥ 40 years with *BRCA* mutation
- Germline testing can be recommended for men with multiple family members diagnosed with prostate cancer [III, B].

Figure 1. Diagnostic work-up and staging for localised prostate cancer.

Purple: algorithm title; white: other aspects of management and non-treatment aspects.

CT, computed tomography; DRE, digital rectal examination; mpMRI, multi-parametric MRI; MRI, magnetic resonance imaging; PET, positron emission tomography; PI-RADS, Prostate Imaging Reporting and Data System; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen.

^aIn addition to PSA level and MRI results, the decision to biopsy or not should be made based on DRE findings, ethnicity, age, comorbidities, free and total PSA, history of previous biopsy and patient values. Biopsy is recommended in patients with a PI-RADS score of 4-5 [I, A], can be recommended in patients with a PI-RADS score of 3 and high-quality MRI [I, B] and is not recommended in patients with a PI-RADS score of ≤ 2 , high-quality MRI and low suspicion for prostate cancer [I, E].

^bTransperineal biopsies are recommended over transrectal ultrasound-guided biopsies [I, A].

^cSee Supplementary Table S1, available at <https://doi.org/10.1016/j.annonc.2025.12.009>, for descriptions of prostate cancer risk groups.

^dIf PSMA-PET is unavailable.

- Risk-stratified pathways, including MRI and PSA-D with or without consideration of a reflex biomarker or risk calculator, can be recommended before prostate biopsy to improve detection of clinically significant prostate cancer and reduce detection of indolent disease [I, B].
- Multiparametric MRI should be carried out before prostate biopsy; high expertise and quality are essential [I, A].
- In patients with a PI-RADS score of 4-5, prostate biopsy is recommended for histological confirmation [I, A].
- In patients with a PI-RADS score of 3 and high-quality MRI, prostate biopsy can be recommended for histological confirmation, based on PSA-D or presence of prostate cancer risk factors [I, B]. In other cases, biopsy is not mandatory, following shared decision making [I, D].
- In patients with a PI-RADS score of ≤ 2 , high-quality MRI and low suspicion for prostate cancer, biopsy is not recommended [I, E].

- Transperineal biopsies are recommended over transrectal US-guided biopsies [I, A].
- Individual reporting of each core biopsy according to location and evaluation in line with ISUP guidelines can be recommended [II, B].

STAGING AND RISK ASSESSMENT

Staging of localised prostate cancer is shown in Figure 1. Localised disease is classified as low, favourable intermediate, unfavourable intermediate, high or very high risk as a guide to prognosis and therapy (Supplementary Table S1, available at <https://doi.org/10.1016/j.annonc.2025.12.009>).¹⁶ Notably, this classification is less applicable to prostate cancer diagnosed via MRI-targeted biopsies and needs to be adapted for current diagnostic pathways. Staging is based on the ninth edition of the Union for International Cancer Control TNM (tumour–node–metastasis) system

(Supplementary Table S2, available at <https://doi.org/10.1016/j.annonc.2025.12.009>).¹⁷

MRI provides local staging, can inform surgical technique (e.g. nerve sparing and excision of areas of potential extra-prostatic extension) and is used in radiotherapy (RT) planning. Patients with low-risk disease (T1-2a, ISUP grade group 1, PSA ≤ 10 ng/ml) do not require further imaging for staging, but MRI can inform on the risk of clinically significant prostate cancer and help with discussions on active surveillance.¹⁸ Patients with favourable intermediate-risk disease do not require further imaging for staging, unless there is a suspicion of disease underestimation. Patients with ISUP grade group ≥ 3 or high-risk disease should undergo imaging for detection of nodal or metastatic disease. Prostate-specific membrane antigen (PSMA)—positron emission tomography (PET)—computed tomography (CT)^{19,20} and possibly whole-body MRI have better accuracy than CT or bone scintigraphy, but they have not been shown to improve clinical outcomes. As the clinical impact of upstaging with PSMA—PET—CT or whole-body MRI compared with conventional imaging is unknown, patients with localised disease on conventional imaging should not be denied radical local treatment solely because metastatic lesions are identified on novel imaging techniques only [i.e. if no correlates are observed on the bone windows or lymph nodes (LNs) of the CT scan].

Genomic and pathology-based signatures have been developed and validated to guide risk assessment and treatment decisions, but they are not yet recommended for clinical practice.²¹⁻²³

Due to the frequent slow progression of localised prostate cancer, life expectancy influences treatment decisions. Estimation of life expectancy, however, is challenging, taking into consideration age, comorbidities and medication, as well as nutritional, cognitive and physical status. Elderly patients may require a specialised geriatric assessment, particularly if they are considered frail based on screening tools such as G8 and Mini-Cog.²⁴

Recommendations

- Localised disease should be classified as low, favourable intermediate, unfavourable intermediate, high or very high risk as a guide to prognosis and therapy [III, A].
- MRI can be recommended for local staging before local treatment, if not carried out before biopsy [III, B].
- Patients with unfavourable intermediate-risk, high-risk or very high-risk disease can be staged for metastases using PSMA—PET—CT as it provides the highest accuracy [I, B]. If PSMA—PET is unavailable, whole-body MRI, choline PET—CT or conventional imaging (CT scan of the chest, abdomen and pelvis, as well as bone scintigraphy) can be used [I, B].
- Patients with negative conventional imaging and positive PSMA—PET—CT should still be considered for local treatment [I, B]; multidisciplinary team discussion can be recommended [III, B].
- Life expectancy and frailty should be assessed as part of the initial patient evaluation [III, A].

MANAGEMENT OF LOCALISED DISEASE

There is no single best option for the optimal management of localised prostate cancer.²⁵ Patients should be informed about the benefits and harms of all treatments within the context of their personal preferences and comorbidities. Given the range of therapies and their side-effects (including sexual dysfunction, infertility and bowel and urinary problems), patients should be offered consultation with both a urologist and a radiation oncologist. Treatment options with curative intent include radical prostatectomy (RP), external beam RT (EBRT) and brachytherapy.

Watchful waiting and active surveillance

Watchful waiting (WW) with delayed hormone therapy upon symptomatic progression is an option for patients who are not suitable for, or are unwilling to undergo, treatment with curative intent.

Active surveillance is a strategy of close monitoring of patients with low-risk disease and selected patients with intermediate-risk disease, typically involving repeat PSA tests, MRI and biopsies, with curative treatment as an option for patients with evidence of disease progression. To date, no clear data exist regarding optimal frequency of follow-up for patients undergoing active surveillance. Moreover, there are no clear data on the assessments that should be carried out at each follow-up visit, criteria for disease progression or triggers to switch to curative treatment. Cancer characteristics must be considered within the context of patient life expectancy and the presence of comorbidities. Active surveillance aims to minimise treatment-related toxicity without compromising cancer control and survival.

RP

Two RCTs have compared RP with WW.^{26,27} The Scandinavian Prostate Cancer Group (SPCG) Trial Number 4 evaluated 695 patients from 1989 to 1999, when PSA testing was not routinely carried out; therefore, its findings may not apply to screening-detected cancers.²⁶ After a median follow-up of 30 years, RP resulted in a 48% lower risk of death from prostate cancer than WW (relative risk 0.52, 95% CI 0.40-0.67), and the number of patients who would need to be treated to avert one death from prostate cancer was six (95% CI 4-10). Patients in the RP group also had lower overall mortality than those in the WW group; however, the benefit of RP over WW was only apparent after long-term follow-up, highlighting that life expectancy is a key component of decision making for radical therapy versus WW.²⁶ The PIVOT trial recruited 731 North American patients with localised prostate cancer from 1994 to 2002.²⁷ This population was more representative of patients with PSA screening-detected cancer, but patients had a remarkably high rate of comorbidities. At a median follow-up of 18 years, surgery was associated with lower all-cause mortality compared with observation in patients with clinically localised prostate cancer (relative reduction 8%, corresponding to an absolute reduction of 5.7 percentage points and a mean survival increase of

1 year).²⁷ The high all-cause mortality rate of ~50% at 10 years reflects the inclusion of patients with significant comorbidities and insufficient baseline life expectancy.²⁷

ProtecT was a prospective randomised clinical phase III study comparing treatment with curative intent (RP or RT) with active monitoring (repeat biopsy in patients with a PSA rise of >50% from baseline and no routine use of MRI).²⁵ The trial recruited 1643 patients with localised prostate cancer between 1999 and 2009, reflective of a PSA screening-detected cohort. After 15 years of follow-up, there was no statistically significant difference in terms of cancer-specific or all-cause mortality rates between the three arms; however, patients in the active monitoring group had a higher metastatic progression rate (9.4%) compared with RP (4.7%) or RT (5.0%).²⁵ Notably, two-thirds of patients undergoing active monitoring had received radical intervention by 15 years. There were substantial long-term differences in urinary, gastrointestinal (GI) and sexual dysfunction in favour of active monitoring. It is important to note that current active surveillance protocols often use a combination of repeated PSA measurements, DRE, MRI and prostate biopsies. Nevertheless, ProtecT demonstrated that a less intensive follow-up regimen might be sufficient to maintain favourable overall and cancer-specific survival in patients undergoing active surveillance.

RP planning should consider the local tumour extent and location, as well as the risk of LN metastases. Surgery should aim for the highest chance of cancer control and the lowest risk of urinary and sexual side-effects. Margins and nerve sparing should be balanced to achieve both goals. Many techniques and tools are available to achieve these aims.²⁸

The role of LN dissection during RP remains controversial. Extended pelvic LN dissection (PLND) provides the highest accuracy of LN staging relative to imaging. Data from two RCTs with short-term follow-up did not show improved biochemical recurrence (BCR)-free survival after extended PLND versus limited PLND.^{29,30} An updated analysis of one of these trials with longer follow-up confirmed the absence of improved BCR-free survival but did report improved metastasis-free survival (MFS) in the extended PLND arm [hazard ratio (HR) 0.75, 95% CI 0.64-0.88, $P < 0.001$].^{31,32}

RP combined with systemic treatment

The combination of RP with systemic treatments, particularly neoadjuvant therapy, has been evaluated in several RCTs, with a systematic review concluding that neoadjuvant androgen deprivation therapy (ADT) is associated with a reduction in tumour size, downstaging and a reduced rate of positive surgical margins, but no improvement in cancer control.³³ Recent phase II studies explored next-generation hormonal therapies in combination with ADT, demonstrating an effect on downstaging and a higher rate of minimal residual disease in the interventional arm.^{34,35} No data are available on short- or mid-term cancer control

outcomes. Ongoing phase III trials [e.g. PROTEUS (NCT03767244)] are exploring the same strategy. Currently, no evidence supports the use of perioperative ADT outside of clinical trials.

RT

No survival data have been published from studies evaluating RP versus RT-ADT in high-risk prostate cancer, but the ongoing phase III SPCG-15 trial, which is comparing primary RP with primary RT-ADT for locally advanced disease, will provide evidence in this setting.³⁶

The case for adding radical RT to ADT in high-risk localised and locally advanced prostate cancer is based on two phase III RCTs. The SPCG-7 trial included 875 patients who received 3 months of ADT plus a first-generation androgen receptor inhibitor followed by flutamide monotherapy.³⁷ Patients were then randomised to receive radical RT to the prostate or systemic therapy alone. Radical RT reduced cause-specific mortality (11.9% versus 23.9% with systemic therapy alone, $P < 0.001$) and overall mortality (29.6% versus 39.4%, $P = 0.004$).³⁷ The National Cancer Institute of Canada/Medical Research Council trial randomised patients with high-risk disease to lifelong ADT alone or ADT-RT.³⁸ Adding RT improved 7-year survival rates (74% with ADT-RT versus 66% with ADT alone, HR 0.77, 95% CI 0.61-0.98, $P = 0.033$).³⁸

For radical prostate RT, dose escalation using intensity-modulated RT, usually with image-guided RT, improves biochemical control with acceptable toxicity. Most studies, however, have not demonstrated MFS or overall survival (OS) benefit,³⁹ apart from the recent GETUG-AFU 18 trial, which reported improved OS with high-dose RT (80 Gy) combined with long-term hormonal therapy (median OS 77.0 months with 80 Gy versus 65.9 months with 70 Gy, HR 0.61, 95% CI 0.44-0.85, $P = 0.0039$).⁴⁰ Multiple phase III studies have shown non-inferiority for moderate hypofractionation compared with schedules over 7-8 weeks, especially in patients with intermediate-risk disease.^{41,42} Moderate hypofractionation is more convenient for the patient, more cost-effective for the provider and is associated with equivalent toxicity rates when compared with conventional RT.⁴³ Stereotactic body RT (SBRT) has been shown to be non-inferior for biochemical control in patients with ISUP grade group 2 intermediate-risk disease, albeit with a slightly higher risk of genitourinary (GU) side-effects.⁴⁴ Ten-year follow-up data from the non-inferiority HYPO-RT-PC trial confirmed the safety and efficacy of ultra-hypofractionation compared with standard fractionation for localised disease.⁴⁵

The role of prophylactic pelvic nodal RT is not clear, with trials reporting contrasting results in terms of oncological benefit.^{46,47}

In patients with ISUP grade group 2 intermediate-risk disease, the PACE-B trial reported a 5-year BCR-free survival rate of 96% after SBRT without ADT.⁴⁴ For patients with primary Gleason score ≥ 4 , concomitant and adjuvant ADT is used alongside RT. ADT has been shown to improve

MFS across risk groups, with the absolute benefit dependent on baseline risk.⁴⁸ All patients with high-risk and very high-risk disease should be considered for long-term ADT (18–36 months).⁴⁸

Patients treated with RP for intermediate- or high-risk disease might require post-operative RT (adjuvant and salvage) with or without ADT. Studies have suggested that salvage prostate bed RT is preferred over adjuvant RT.^{49–51} Patients with high-risk characteristics benefit from long-term ADT (2 years) alongside prostate bed RT in terms of MFS, but no OS benefit has been reported.⁵² The optimal duration of concomitant ADT (6 versus 24 months) in the salvage setting remains a matter of debate and should be individualised based on cancer risk and comorbidities.⁵³

Focal ablative therapy

Focal ablative treatments have recently emerged as therapeutic options in localised prostate cancer. These modalities aim to provide equivalent oncological benefits to RP and RT with improved functional outcomes.^{54,55} To date, no prospective randomised studies have compared focal ablation with RP or RT; therefore, these alternative options should only be offered within a clinical trial or prospective registry.

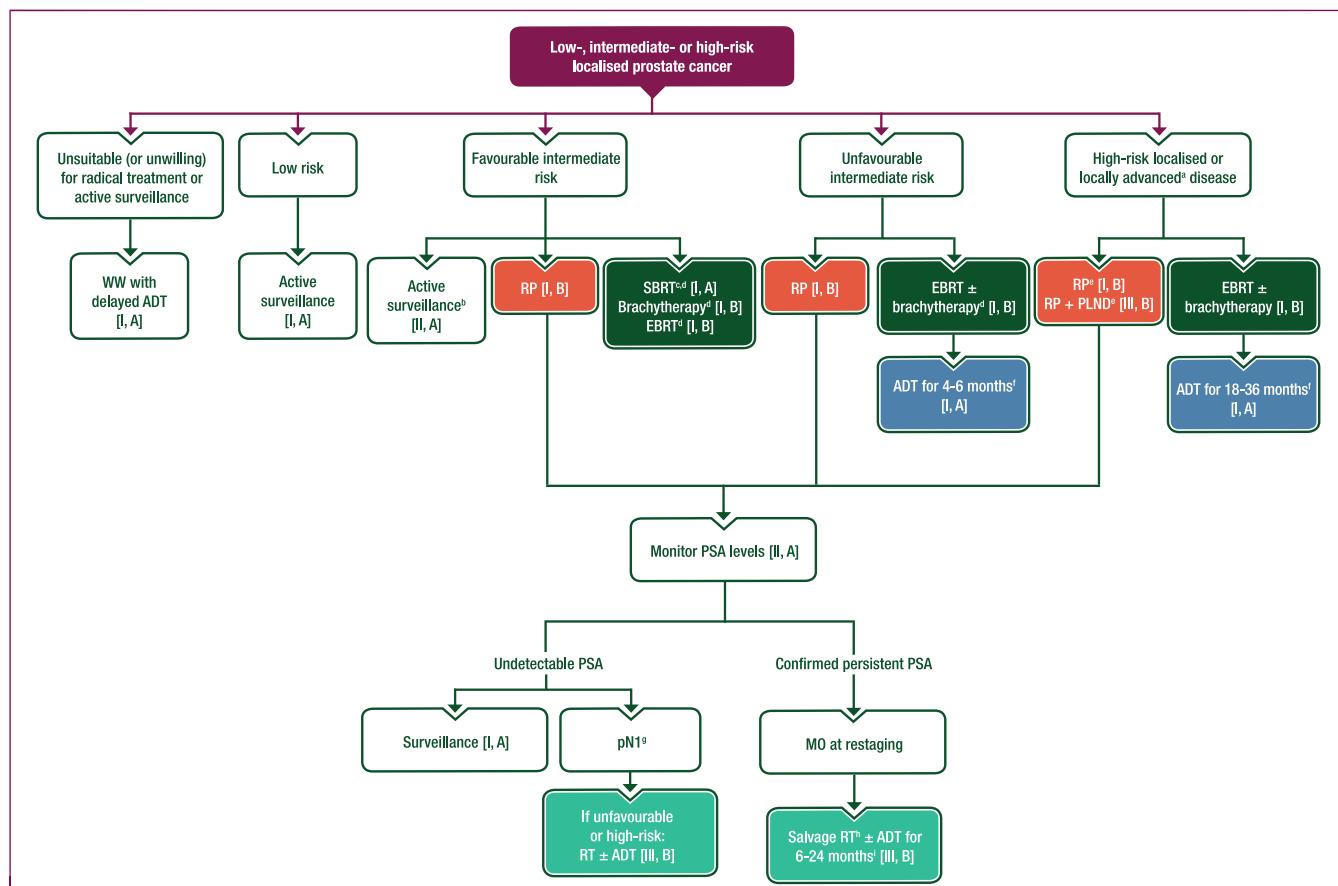
An algorithm for the management of low-, intermediate- or high-risk localised prostate cancer is provided in Figure 2.

Recommendations

- WW with delayed ADT for symptomatic progression is recommended for patients who are not suitable for, or are unwilling to undergo, radical treatment or active surveillance [I, A].
- Active surveillance is recommended for patients with low-risk disease [I, A].
- Active surveillance is also recommended for selected patients with favourable intermediate-risk disease (ISUP grade group 2 and minor component of Gleason score 4) [II, A].
- RP or RT (EBRT or brachytherapy) can be recommended for patients with favourable intermediate-risk disease [I, B].
- SBRT is a recommended option for patients with favourable intermediate-risk and ISUP grade group 2 disease [I, A].
- RP or RT (EBRT with or without brachytherapy) can be recommended for patients with unfavourable intermediate-risk disease [I, B].
- Extended PLND can be recommended for accurate LN staging [I, B], although its impact on outcome remains controversial.
- Ultra-hypofractionated RT can be recommended as an option for patients with intermediate-risk disease [I, B].
- Moderate hypofractionation is recommended for most patients with localised disease [I, A].

- Patients receiving radical RT for intermediate-risk disease with unfavourable features (e.g. ISUP grade group 3) should receive short-course ADT for 4–6 months [I, A].
- EBRT with or without brachytherapy can be recommended for high-risk localised or locally advanced [clinical (c) T3–4, N1] prostate cancer [I, B]. These patients should receive long-course ADT (18–36 months) [I, A].
- Patients' health status should be considered when planning the addition and duration of ADT combined with radical RT [II, A].
- RP [I, B] or RP with PLND [III, B] can be recommended for patients with high-risk localised disease within the context of a potentially multimodal approach.
- Primary ADT alone cannot be recommended as initial treatment of non-metastatic disease [I, D].
- Adjuvant post-operative RT after RP cannot generally be recommended [I, D].

MANAGEMENT OF VERY HIGH-RISK AND/OR cN+ DISEASE


Very high-risk or locally advanced prostate cancer is often characterised based on the presence of extra-prostatic tumour growth and/or pelvic LN metastasis. The multi-arm, multi-stage STAMPEDE platform protocol explored treatment options in this patient cohort.⁵⁶ Patients presenting with non-metastatic disease on conventional imaging and with very high-risk features (defined as N+ or, if N0, two of: T3 or T4, Gleason sum 8–10 or PSA ≥ 40 ng/ml) were randomised to receive standard of care (SoC) RT to the prostate (with or without RT to pelvic LNs) combined with 3 years of ADT or RT to the prostate (with or without RT to pelvic LNs) combined with 3 years of ADT plus 2 years of abiraterone.⁵⁶ The addition of abiraterone significantly improved MFS (HR 0.54, 95% CI 0.43–0.68) and OS (HR 0.63, 95% CI 0.48–0.82).⁵⁶

Patients with metastatic disease on PSMA–PET–CT but non-metastatic disease on conventional imaging might best be managed as patients with very high-risk locally advanced disease. There is currently no level of evidence (LoE; see Methodology) I for adjuvant or neoadjuvant androgen receptor pathway inhibitors (ARPIs) other than abiraterone, or for such treatment intensification in patients undergoing surgery. Surgery in this situation lacks the possibility for treatment intensification with an ARPI and is likely to be followed by further multimodal treatments (RT or hormonal therapy).⁵⁷

An algorithm for the management of very high-risk or cN1 disease is provided in Figure 3.

Recommendations

- EBRT with or without brachytherapy to the prostate (and pelvic nodes if indicated) combined with neoadjuvant and adjuvant ADT (3 years) and abiraterone (2 years) is recommended for patients with very high-risk localised disease or cN1 disease [I, A; abiraterone is not European Medicines Agency (EMA) or Food and Drug Administration (FDA) approved in this setting].

Figure 2. Management of low-, intermediate- or high-risk localised prostate cancer.

Purple: algorithm title; orange: surgery; dark green: RT; blue: systemic anticancer therapy or their combination; turquoise: non-systemic anticancer therapies or combination of treatment modalities; white: other aspects of management and non-treatment aspects.

ADT, androgen deprivation therapy; c, clinical; EBRT, external beam RT; ISUP, International Society of Urological Pathology; LN, lymph node; p, pathological; PET, positron emission tomography; PLND, pelvic LN dissection; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; RP, radical prostatectomy; RT, radiotherapy; SBRT, stereotactic body RT; WW, watchful waiting.

*Locally advanced disease defined as cT3-4, N1.

†Patients with ISUP grade group 2 disease and minor component of Gleason score 4.

‡Patients with ISUP grade group 2 disease.

§Ultra-hypofractionated RT can be recommended as an option for patients with intermediate-risk disease [I, B]. Moderate hypofractionation is recommended for most patients with localised disease [I, A].

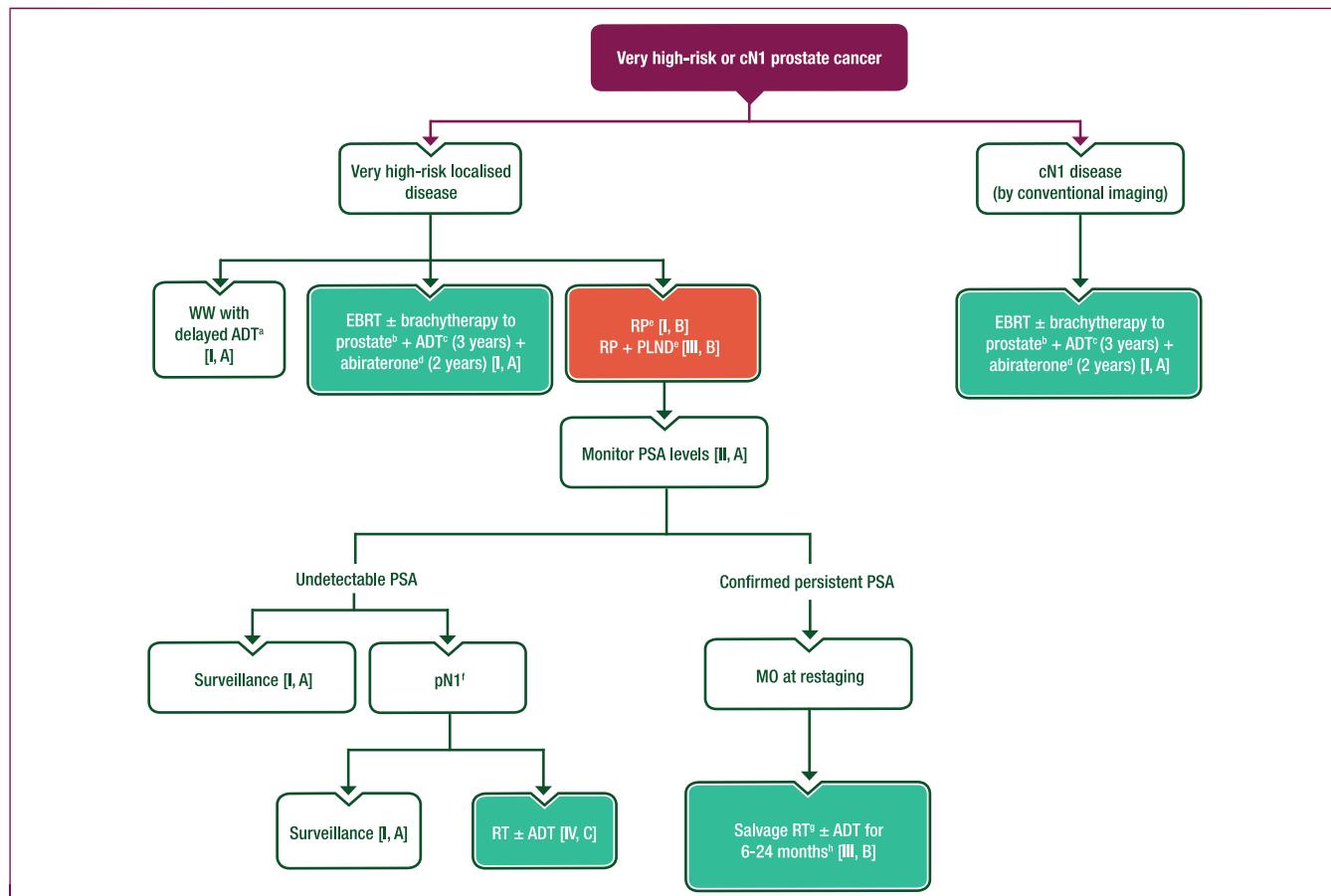
¶Selected patients with high-risk disease within the context of a potentially multimodal approach.

**Patients' health status should be considered when planning the addition and duration of ADT combined with radical RT [II, A].

††Decisions for additional treatment in patients with pN1 disease and undetectable PSA after surgery can be based on pathology (pathological stage, ISUP grade group, number of positive LNs) and patient preference [III, B].

‡‡To prostate bed ± pelvic nodes (if high risk of pelvic nodal recurrence); if PSMA—PET staging is MO or if PSMA—PET is not available and conventional imaging suggests MO.

§§Patients with PSA >0.6 ng/ml at salvage RT, nodal metastases, ISUP grade group 4-5 and/or presence of seminal vesicle invasion.


- RP [I, B] or RP with PLND [III, B] can be recommended for selected patients with very high-risk localised disease within the context of a potentially multimodal approach.
- Adjuvant RT with or without ADT may be considered for patients with very high-risk disease and pathological (p)N1 after RP [IV, C].

MANAGEMENT OF pN1 DISEASE

Pathological LN involvement at the time of RP and PLND is an adverse prognostic factor. In a Surveillance, Epidemiology, and End Results (SEER) study of 30 016 patients undergoing RP, of whom 1869 were found to have pN1 disease, 5-year cause-specific mortality was 6.0% for patients with pN1 disease versus 0.8% for patients with pN0

or pNx disease.⁵⁸ Five-year cause-specific mortality was 2.4% for those with 1-2 positive LNs and 7.2% for those with ≥3 positive LNs.⁵⁸ In patients with pN1 disease, persistently detectable post-operative PSA is associated with poor outcomes. A study of 319 patients with pN1 disease, of which 83 had persistently detectable PSA (>0.1 ng/ml) at 6 weeks, reported an 8-year cause-specific mortality rate of 16% for those with persistently detectable PSA versus 4% for those without.⁵⁹

Treatment options for pN1 disease after RP and PLND include observation (if PSA is undetectable) with treatment upon disease progression, adjuvant ADT and/or adjuvant RT. There is a lack of RCT data in this setting. A randomised trial of 98 patients in the pre-PSA era reported an OS

Figure 3. Management of very high-risk or cN1 prostate cancer.

Purple: algorithm title; orange: surgery; turquoise: non-systemic anticancer therapies or combination of treatment modalities; white: other aspects of management and non-treatment aspects.

ADT, androgen deprivation therapy; c, clinical; EBRT, external beam RT; EMA, European Medicines Agency; FDA, Food and Drug Administration; ISUP, International Society of Urological Pathology; LN, lymph node; p, pathological; PET, positron emission tomography; PLND, pelvic LN dissection; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; RP, radical prostatectomy; RT, radiotherapy; WW, watchful waiting.

^aIf patient is not suitable for (or unwilling to have) radical treatment.

^bPelvic nodal RT can be considered in patients at high risk of pelvic nodal recurrence [II, B].

^cPatients' health status should be considered when planning the addition and duration of ADT combined with radical RT [II, A].

^dNot EMA or FDA approved in this setting.

^eSelected patients with very high-risk disease within the context of a potentially multimodal approach.

^fDecisions for additional treatment in patients with pN1 disease and undetectable PSA after surgery can be based on pathology (pathological stage, ISUP grade group, number of positive LNs) and patient preference [III, B].

^gTo prostate bed ± pelvic nodes (if high risk of pelvic nodal recurrence); if PSMA—PET staging is MO or if PSMA—PET is not available and conventional imaging suggests MO.

^hPatients with PSA >0.6 ng/ml at salvage RT, nodal metastases, ISUP grade group 4-5 and/or presence of seminal vesicle invasion.

benefit with immediate versus deferred ADT,⁶⁰ but this is of uncertain relevance to contemporary practice. Randomised trials of adjuvant RT have included very few patients with pN1 disease. A retrospective study reported that adjuvant RT was associated with improved disease outcomes in patients with adverse pathology,⁶¹ but this does not amount to high-level evidence.

Recommendations

- Decisions for additional treatment in patients with pN1 disease and undetectable PSA after surgery can be based on pathology (pathological stage, ISUP grade group, number of positive LNs) and patient preference [III, B].

- Adjuvant RT (with or without ADT) can be considered in patients with unfavourable characteristics [III, B].

MANAGEMENT OF PERSISTENT PSA AFTER RP

Patients with persistent PSA after RP (PSA >0.1 ng/ml 6-9 weeks after surgery) should have repeat staging to determine the possibility of salvage RT.⁶² Whenever possible, PSMA-based imaging should be used.⁶³ Conventional imaging with CT or MRI and bone scintigraphy has a low diagnostic yield at low PSA levels. The role of salvage RT and metastasis-directed therapy is uncertain in patients with distant metastases; these cases should be discussed in a multidisciplinary setting and/or included in clinical trials. In the absence of distant metastases, salvage RT may be

used, and the addition of ADT should be considered, although there is a lack of data in this clinical scenario. Based on results from the RADICALS-HD study, there is controversy around the dose and duration of ADT if this strategy is used for patients with PSA elevations following a period of undetectable PSA after RP.^{52,53} It is unclear how these data can be extrapolated to the setting of persistent PSA. Patients with persistent PSA after RP are considered to be at higher risk of failure if RT is given without ADT.⁶⁴

Recommendations

- Surveillance is recommended for patients with undetectable PSA after RP [I, A].
- Patients with confirmed persistent PSA >0.1 ng/ml after RP can be restaged with PSMA—PET—CT if available [III, B].
- If PSMA—PET—CT is not available, conventional imaging can be considered if not done before surgery and if there are high-risk post-operative features (e.g. LN metastases, ISUP grade group 4-5 and/or presence of seminal vesicle invasion) [III, B].
- Salvage RT can be recommended if PSMA—PET staging is M0 or if PSMA—PET is not available and conventional imaging suggests M0 [III, B].
- Pelvic nodal RT can be recommended for patients at high risk of pelvic nodal recurrence [II, B].
- The addition of ADT (6-24 months) can be recommended for patients with higher PSA at salvage RT (>0.6 ng/ml), nodal metastases, ISUP grade group 4-5 and/or presence of seminal vesicle invasion [III, B].

MANAGEMENT OF BCR AFTER LOCAL TREATMENT

Follow-up and BCR

Patients are monitored after local treatment of oncological, functional and toxicity purposes. PSA tests should be carried out on a regular basis, with their frequency reflecting the risk of recurrence, which is highest during the first 3 years after surgery.⁶⁵ There are no prospective data providing information on the optimal PSA testing regimen, but a reasonable schedule may be every 6 months during the first 3 years and annually beyond that. For patients undergoing radical RT and ADT, testosterone recovery needs to be monitored together with PSA, and closer follow-up might be warranted during this process (e.g. every 6 months). Late recurrences are observed; therefore, long-term follow-up seems to be warranted, especially as the PSA test is risk free. After local treatment, BCR is defined as a PSA rise in the absence of disease on imaging. After RT, BCR is defined by following the Phoenix criteria of PSA nadir +2 ng/ml.⁶⁶ After RP, BCR is defined as a rising PSA level that is confirmed by a second rise, after having been non-detectable (<0.1 ng/ml) after RP.⁶⁷ These definitions should, however, primarily be viewed as a means of

standardising reporting of outcomes and not as hard limits for triggering action, having been defined arbitrarily rather than based on interaction with outcomes.

Risk stratification for BCR

BCR remains a heterogeneous disease scenario with some patients not progressing to metastatic disease even after long-term follow-up, and others progressing to metastases and death.⁶⁸ For that reason, life expectancy and comorbidities are equally important as cancer characteristics when managing BCR. Recurrence may be local (prostatic bed after RP or prostate after RT), locoregional (pelvic LNs), distant (bones, viscera) or combined. Several risk factors allow evaluation of mortality risk in patients with BCR. A short PSA doubling time (<6-12 months) and initial ISUP grade group 4-5 are associated with increased prostate cancer-specific mortality after RP,⁶⁹ whereas after RT, early development of BCR (<18 months) and initial ISUP grade group 4-5 are linked to increased mortality.⁷⁰ Genomic classifiers are an additional option to risk stratify patients with BCR to treatment or surveillance.⁷¹ Patients without these risk characteristics might have more favourable long-term disease outcomes⁷⁰ and may not require salvage treatment.

Restaging in BCR

Differentiation of locoregional from systemic disease in patients with BCR based on conventional imaging (bone scintigraphy, CT) is challenging, as sensitivity for detecting nodal or metastatic recurrences is poor at low PSA levels. PSMA—PET imaging is replacing conventional imaging based on its superior sensitivity and specificity.^{72,73} After RP, MRI lacks sensitivity in detecting local recurrence at low or very low PSA ranges and cannot be recommended.⁷⁴ After RT, MRI has good sensitivity in early BCR to detect local, intraprostatic recurrence and can help guide biopsy cores to histologically confirm local recurrence.⁷⁴ No trial data support the omission of local salvage RT in the absence of an imaging-detected local recurrence.

Only one trial has reported that the detection of recurrence and a subsequent treatment change improves outcomes. The EMPIRE-1 study was a single-centre, open-label, phase II-III RCT, in which patients with detectable PSA after RP and negative conventional imaging (no extrapelvic or bone findings) were randomly assigned (1 : 1) to RT directed by conventional imaging alone or by conventional imaging plus ¹⁸F-fluciclovine-PET—CT.⁷⁵ Three-year event-free survival was 63.0% (95% CI 49.2% to 74.0%) in the conventional imaging group versus 75.5% (95% CI 62.5% to 84.6%) with ¹⁸F-fluciclovine-PET—CT (95% CI 4.3% to 20.8%, $P = 0.0028$). Distant failure-free survival was 51.2% with conventional imaging versus 75.5% with ¹⁸F-fluciclovine-PET—CT (95% CI 15.6% to 33.0%, $P < 0.0001$).⁷⁵ It is notable that patients with extrapelvic or skeletal disease on

¹⁸F-fluciclovine-PET–CT were excluded from analysis in the PET group, resulting in inflated positive outcomes in this arm.⁷⁵

Nodal recurrences based on novel imaging after maximal local therapy

Several randomised phase II trials have evaluated RT options for PET–CT-detected nodal or metastatic recurrences.^{76–78} The PEACE V-STORM trial randomised patients with PET-detected nodal recurrences to either a metastasis-directed approach or whole pelvis RT (RT of all pelvic LNs) and showed that whole pelvis RT resulted in superior BCR-free survival (HR 0.62, 80% CI 0.48–0.80, $P = 0.014$) and MFS [HR 0.62, 80% CI 0.44–0.86, $P = 0.063$ (statistically significant)] at 4 years.⁷⁹ Based on these results, elective nodal RT with inclusion of the prostate bed, if not previously treated, provides the best oncological outcomes for patients with PET-detected nodal recurrences. No prospective trials of surgical salvage LN dissection have been published.

Observation versus systemic therapy for BCR

The median time from detection of BCR to developing metastases on conventional imaging is 8 years, and the median time from metastasis to death is another 5 years.⁶⁸ The TOAD⁸⁰ and ELAAT⁸¹ studies compared early versus deferred ADT in patients with PSA failure after local therapy. The reasons to start ADT were the development of symptoms or metastases on conventional imaging or PSA doubling time decreasing to 6 months. Pooled analysis of the two studies reported no OS benefit with early ADT (HR 0.75, 95% CI 0.40–1.41, $P = 0.37$).⁸² Early ADT adversely affected quality of life in terms of sexual activity and hot flushes.

Intermittent versus continuous ADT was studied in a randomised trial of 1386 patients with a PSA level of >3.0 ng/ml at relapse >1 year after radical RT.⁸¹ Intermittent ADT had a more favourable toxicity profile with no difference in OS (HR 1.02, 95% CI 0.86–1.21).⁸¹ This emphasises that the timing of systemic therapy should be balanced against possible side-effects, life expectancy and comorbidities. Risk factors that might help risk stratify patients are PSA doubling time, ISUP grade group and time interval from local treatment to BCR.

The phase III EMBARK study randomised 1068 patients with high-risk BCR (1 : 1: 1) to enzalutamide daily plus leuprolide every 12 weeks, placebo plus leuprolide or enzalutamide monotherapy.⁸³ High-risk BCR was defined by a PSA doubling time of ≤ 9 months and PSA ≥ 2 ng/ml above nadir after RT or ≥ 1 ng/ml after RP with or without post-operative RT. Treatment could be interrupted after 9 months if PSA reduced to <0.2 ng/ml, with reinitiation at ≥ 2.0 ng/ml (prior RP) or 5.0 ng/ml (prior RT). The 5-year MFS rate was improved with enzalutamide–leuprolide versus placebo–leuprolide (HR 0.42, 95% CI 0.30–0.61,

$P < 0.001$).⁸³ The 8-year OS rate was also higher with enzalutamide–leuprolide versus placebo–leuprolide (HR 0.60, 95% CI 0.44–0.80, $P < 0.001$).⁸⁴ MFS was also improved with enzalutamide monotherapy compared with placebo–leuprolide (HR 0.63, 95% CI 0.46–0.87, $P = 0.005$),⁸³ but there was no significant OS benefit.⁸⁴ AE profiles were different between the groups, with notable gynaecomastia with enzalutamide monotherapy.⁸³

Adjuvant versus salvage RT and other local salvage options

Post-operative RT following RP may be given as adjuvant RT (undetectable post-operative PSA) or salvage RT (persistent or rising PSA). Four RCTs have investigated adjuvant RT compared with observation;^{85–88} all demonstrated improved biochemical control with adjuvant RT, but no consistent OS benefit. More recently, RADICALS-RT,⁴⁹ RAVES⁵⁰ and GETUG-AFU 17⁵¹ have compared adjuvant RT versus observation with early salvage RT upon PSA failure. These trials were combined in the ARTISTIC meta-analysis, which concluded that adjuvant RT was associated with more harm (increased bladder and bowel toxicity) and no proven benefit in terms of progression-free survival (PFS).⁸⁹ Salvage RT should be given early; outcomes are more favourable if it is initiated when PSA is <0.5 ng/ml.⁷⁰ Of note, in RADICALS-RT, RAVES and GETUG-AFU 17, salvage RT was started at PSA ≥ 0.1 ng/ml or three consecutive rising PSA results,⁴⁹ PSA ≥ 0.2 ng/ml⁵⁰ and PSA ≥ 0.1 ng/ml confirmed after 4 weeks,⁵¹ respectively (i.e. lower than 0.5 ng/ml). A recent analysis based on individual patient data from GETUG-AFU 16, NRG/RTOG-9601 and a subgroup of EORTC-22911 reported that three prognostic groups can be identified based on PSA ≥ 0.5 ng/ml at start of salvage RT, Gleason score ≥ 8 and negative margin status, where high risk is two or three of these risk factors, intermediate risk is one risk factor and low risk is zero risk factors.⁹⁰

Two trials have compared salvage RT versus salvage RT plus 6 months of ADT, reporting improvements in MFS and PFS with the addition of ADT, but no OS benefit.^{91,92} The RTOG 9601 study demonstrated a lower rate of prostate cancer death (HR 0.77, 95% CI 0.59–0.99, $P = 0.04$) and improved OS (HR 0.49, 95% CI 0.32–0.74, $P < 0.001$) with salvage RT plus 24 months of bicalutamide versus salvage RT alone.⁹³ Post hoc subgroup analyses indicated that patients with a pre-RT PSA >0.7 ng/ml, Gleason score 8–10 and positive margins derived the greatest benefit from the addition of bicalutamide.⁹³

The RADICALS-HD trial evaluated 6 months or 24 months of ADT in addition to post-operative RT, combining adjuvant RT and salvage RT in the study cohorts. One analysis compared 6 months of ADT with no ADT and reported no MFS benefit.⁵³ A second analysis evaluated 6 months versus 24 months of ADT and reported a 10-year MFS benefit with 24 months of ADT (HR 0.773, 95% CI 0.612–0.975, $P = 0.029$).⁵² The most pronounced effect was observed in patients with PSA >0.5 ng/ml at the time of RT

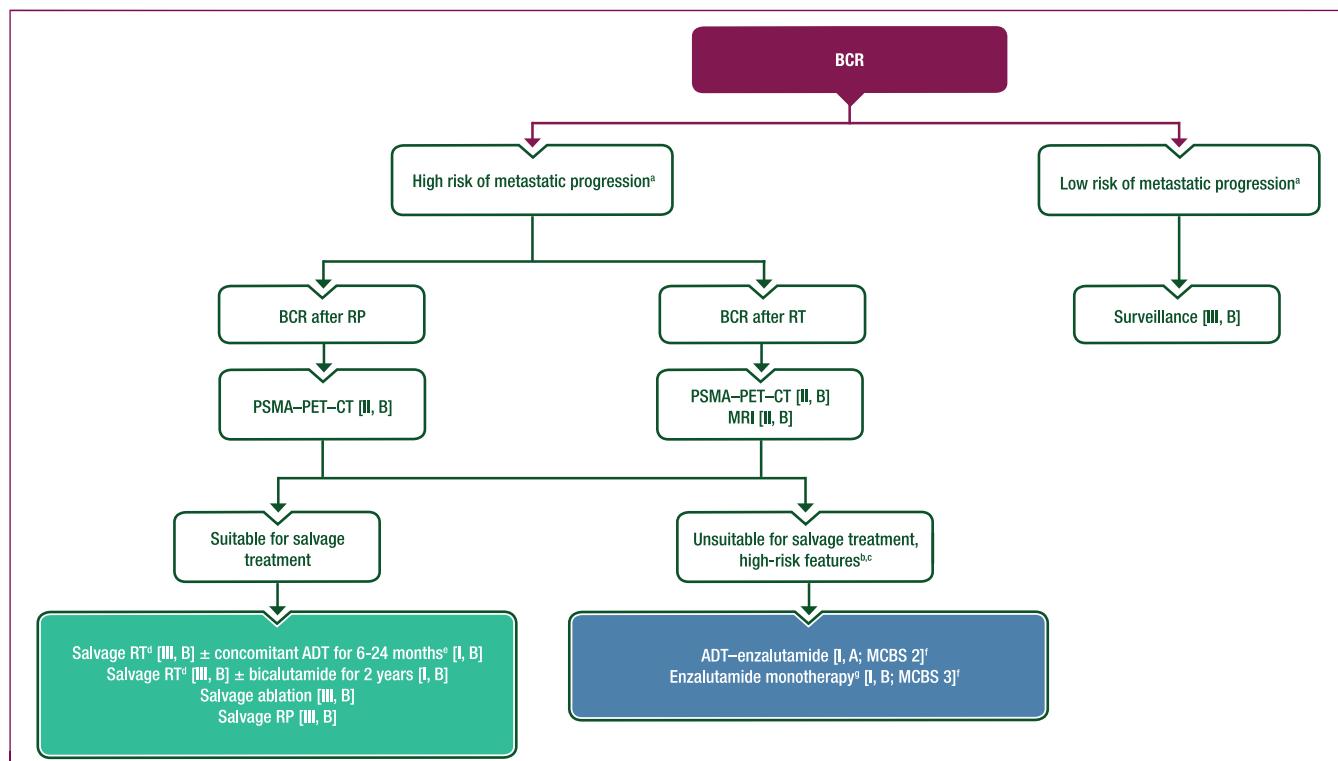
and in patients with a Charlson Comorbidity Index of 0. Patients with lower-risk disease seem to derive little benefit from adding ADT, whereas patients with higher-risk disease, if being offered ADT, should receive 24 months of treatment. It should be noted, however, that groupings were not predefined and were determined by clinical preference. Decisions about adding ADT and the length of treatment should incorporate patient preferences and comorbidities.

Histological proof of local recurrence by biopsy is needed before local salvage treatment after initial organ-sparing treatment, if MRI or PSMA—PET shows suspicion of local recurrence. Local salvage treatment with a curative approach can be offered to well-informed patients. Treatment options are salvage RP, SBRT or salvage ablation [e.g. high intensity focused ultrasound (HIFU), cryotherapy, laser therapy].⁹⁴ In a recent meta-analysis of 28 studies, RFS rates were 84.0%, 69.0%, 58.0% and 45% after brachytherapy, EBRT, cryotherapy and HIFU, respectively.⁹⁵ After salvage RP, RFS was 75%–78.5% at a median follow-up of 18–35 months. No prospective RCTs have compared these treatment options, and any local salvage treatment is associated with an increased risk of treatment-related GU and GI toxicity.⁹⁴

An algorithm for the treatment of patients with BCR is shown in [Figure 4](#).

Recommendations

- Following RP, serum PSA levels should be monitored [II, A].
- In case of BCR after RP, PSMA—PET—CT can be recommended before pelvic salvage treatment [II, B]. In case of BCR after RT, both PSMA—PET—CT and MRI can be recommended, especially if local salvage treatment is being considered [II, B].
- Surveillance can be recommended for patients with BCR who are at low risk of metastatic progression [III, B].
- Salvage RT can be recommended in the event of PSA failure if there is a risk of metastatic progression (PSA doubling time <6–12 months after RP) [III, B].
- Salvage RT should start early (ideally PSA \sim 0.2 ng/ml but also taking into account other factors such as PSA doubling time, pathology, surgical margins and time from surgery) [I, A].
- Pelvic nodal RT may be considered for patients undergoing salvage RT to the prostate bed [I, C].
- For patients undergoing salvage RT, concomitant ADT for 6–24 months or bicalutamide 150 mg daily for 2 years can be recommended [I, B].
 - Long-term ADT can be recommended for patients at high risk of progression [I, B] and short-term or no ADT can be recommended for patients at low risk of progression [I, B].
 - Early ADT alone cannot be recommended for patients with low-risk BCR and no indication for local salvage treatment [II, D].


- Intermittent ADT can be recommended for patients with BCR and absence of metastatic disease on conventional imaging who achieve a deep PSA response under ADT [I, B]. The optimal regimen for intermittent ADT is unknown.
- For patients with high-risk BCR (short PSA doubling time, ISUP grade group 4–5, symptomatic local disease or proven metastases), immediate ADT can be recommended [II, B].
- Salvage ablation or salvage RP can also be recommended for patients with high-risk BCR [III, B].
- ADT—enzalutamide is recommended for patients with BCR and high-risk features who are not candidates for radical salvage treatment (M0 on conventional imaging, PSA doubling time <9 months, PSA >1 ng/ml after RP or PSA \geq 2 ng/ml above nadir after RT) [I, A; ESMO—Magnitude of Clinical Benefit Scale (MCBS) v2.0 score: 2 but associated with an increased risk of toxicity].
- In patients refusing ADT, enzalutamide monotherapy can be recommended [I, B; ESMO-MCBS v2.0 score: 3].

METHODOLOGY

This Clinical Practice Guideline (CPG) was developed in accordance with the ESMO standard operating procedures for CPG development (<https://www.esmo.org/guidelines/esmo-guidelines-methodology>). All recommendations provided are based on current scientific evidence and the authors' collective expert opinion. Where recommendations for multiple different treatment options exist, prioritisation is illustrated by ordering these options according to: LoE and grade of recommendation (GoR); where equal, by ESMO-MCBS score; where equal, by alphabetical order. The relevant literature has been selected by the expert authors. ESMO-MCBS v2.0⁹⁶ was used to calculate scores for new therapies/indications approved by the EMA or FDA (<https://www.esmo.org/guidelines/esmo-mcbs>). The scores have been calculated and validated by the ESMO-MCBS Working Group and reviewed by the authors. The FDA/EMA or other regulatory body approval status of new therapies/indications is reported at the time of writing this CPG. LoEs and GoRs have been applied using the system shown in [Supplementary Table S3](#), available at <https://doi.org/10.1016/j.annonc.2025.12.009>.⁹⁷ Statements without grading were considered justified standard clinical practice by the authors. For future updates to this CPG, including Express Updates and Living Guidelines, please see the ESMO Guidelines website: <https://www.esmo.org/guidelines/esmo-clinical-practice-guideline-local-and-locoregional-prostate-cancer>.

ACKNOWLEDGEMENTS

Manuscript editing support was provided by Sammi Cham, Ioanna Ntai and Claire Bramley (ESMO Guidelines staff), and Angela Corstorphine and Sian-Marie Lucas of Kstorfin Medical Communications Ltd (KMC); this support was

Figure 4. Management of patients with BCR.

Purple: algorithm title; blue: systemic anticancer therapy or their combination; turquoise: non-systemic anticancer therapies or combination of treatment modalities; white: other aspects of management and non-treatment aspects.

ADT, androgen deprivation therapy; BCR, biochemical recurrence; CT, computed tomography; EMA, European Medicines Agency; FDA, Food and Drug Administration; MCBS, Magnitude of Clinical Benefit Scale; MRI, magnetic resonance imaging; PET, positron emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; RP, radical prostatectomy; RT, radiotherapy.

^aHigh risk: PSA doubling time <6–12 months after RP; low risk: all others.

^bM0 on conventional imaging, PSA doubling time <9 months, PSA >1 ng/ml after RP or PSA ≥2 ng/ml above nadir after RT.

^cFor patients with high-risk BCR, immediate ADT can be recommended [II, B].

^dSalvage RT should start early (ideally PSA ~0.2 ng/ml but also taking into account other factors such as PSA doubling time, pathology, surgical margins and time from surgery) [I, A]. Pelvic nodal RT may be considered for patients undergoing salvage RT to the prostate bed [I, C].

^eLong-term ADT can be recommended for patients at high risk of progression [I, B] and short-term or no ADT can be recommended for patients at low risk of progression [I, B]; intermittent ADT can be recommended for patients with BCR and absence of metastatic disease on conventional imaging who achieve a deep PSA response under ADT [I, B].

^fESMO-MCBS v2.0²⁶ was used to calculate scores for therapies/indications approved by the EMA or FDA. The scores have been calculated and validated by the ESMO-MCBS Working Group and reviewed by the authors (<https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-evaluation-forms>).

^gPatients refusing ADT.

funded by ESMO. Nathan Cherny, member of the ESMO-MCBS Working Group, and Urania Dafni, Giota Zygoura, Georgia Dimopoulou and Tereza Dellaporta of Frontier Science Foundation Hellas, provided review and validation of the ESMO-MCBS scores. Nicola Latino and Francesca Chiovato (ESMO Scientific Affairs staff) provided coordination and support of the ESMO-MCBS scores; this support was funded by ESMO.

FUNDING

No external funding has been received for the preparation of this guideline. Production costs have been covered by ESMO from central funds.

DISCLOSURE

JW reports institutional fees for advisory board membership from Janssen and Telix; institutional fees as an invited

speaker from Astellas, AstraZeneca, Bayer, Blue Earth Diagnostics, Curium, Intuitive, Ipsen, Janssen and Novartis; institutional funding for expert testimony from Intuitive; other institutional funding from Exact Imaging and Janssen; and a non-remunerated leadership role for the European Association of Urology (EAU). GA reports personal fees for advisory board membership from Astellas, AstraZeneca, Bayer, Blue Earth Therapeutics, Bristol Myers Squibb (BMS), Janssen, Merck, Merck Sharpe and Dohme (MSD), Novartis, Pfizer, Sanofi and Veracyte; personal fees as an invited speaker from Astellas, AstraZeneca, Janssen and Sanofi; personal royalties from Artera and the Institute of Cancer Research (was included in list of rewards to discoverers of abiraterone); personal travel expenses from Amgen, Merck Serono and Pfizer; institutional research grants from Astellas, Janssen and Novartis; institutional funding from Blue Earth Therapeutics and Veracyte; institutional funding as local principal investigator (PI) from Novartis and Pfizer;

institutional funding as coordinating PI from Janssen; institutional licencing fees from Veracyte; and a non-remunerated role as project lead for Artera and Veracyte. AB reports personal fees for advisory board membership from Accord, Astellas, AstraZeneca, Bayer, Janssen, Novartis, Pfizer and Sandoz; personal stocks/shares in Glactone Pharma, LIDDS Pharma; institutional funding as local PI from Bayer and SpectraCure; institutional funding as coordinating PI from Astellas, Curasight, Janssen, Prostate Cancer Clinical Trials Consortium — Movember and SpectraCure; a non-remunerated advisory role for the EAU; a non-remunerated role as board member at the EAU; and non-remunerated membership with the American Society of Clinical Oncology (ASCO), American Urological Association and EAU. PB reports personal fees as an invited speaker from Bayer, Ipsen, Janssen, MSD and Sanofi Aventis; personal fees for an editorial role as Editor-in-Chief for *Radiotherapy and Oncology*; institutional fees for advisory board membership from Bayer, Becton Dickinson and Neolys; and institutional funding as PI from Boston Scientific. ECa reports personal fees for advisory board membership from AstraZeneca, Bayer, Daiichi Sankyo, Janssen, Lilly, Medscape, MSD, Novartis and Pfizer; personal fees as an invited speaker from Astellas, AstraZeneca, Janssen, PeerVoice and Pfizer; personal fees for a writing engagement from Pfizer; personal fees as a steering committee member from Janssen, Merck Serono, Pfizer and Telix; institutional research grants from Bayer, Janssen and Pfizer; and institutional funding as local PI from AstraZeneca, Janssen, MacroGenics, MSD and Pfizer. ECo reports personal fees as an invited speaker from Janssen; and a non-remunerated advisory role as a consulting pathologist for EAU Guidelines. LE reports personal fees for advisory board membership from Clarity Pharma and Novartis; personal fees as an invited speaker from AstraZeneca and GE HealthCare; institutional fees as an invited speaker from Astellas; institutional research grant from Novartis; and institutional funding as coordinating PI from Clarity Pharma and Telix. SFa reports personal fees for advisory board membership from Immedica, Novartis/Advanced Accelerator Applications (AAA), Sofie and Telix; personal fees as an invited speaker from AAA, Astellas, Bayer, Blue Earth Therapeutics, GE HealthCare, Novartis, Sanofi and United Imaging; and personal fees for personnel training from Bayer. VF reports institutional fees as an invited speaker for Astellas, Janssen, MSD and Novartis; and institutional funding as local PI from Janssen. SFo reports institutional fees for advisory board membership from Gilead. SG reports personal fees for advisory board membership from the University of Applied Sciences and Arts of Southern Switzerland; personal fees as an invited speaker for ESMO and Meister ConCept GmbH; personal travel grants from Bayer, Gilead, Johnson & Johnson and Intellisphere LLC; a patent for a biomarker of Proteomedix/Onconetix; institutional fees for advisory board membership from Amgen, Astellas, Bayer, BMS, Boehringer Ingelheim, Daiichi Sankyo, GlaxoSmithKline (GSK), InnoMedica, Ipsen, LinKinVax, MacroGenics, Merck, MSD, Novartis and Pfizer;

institutional fees as an invited speaker for AdMeTech Foundation, ASCO GU, EPG Health, ESMO, Intellisphere LLC, medtoday Switzerland, Meister ConCept GmbH, OriKata, Swiss Group for Clinical Cancer Research, Silvio Grasso Consulting and UroPrática Group in São Paulo; institutional funding as a co-investigator from Astellas; other institutional fees from Avalere Health (expert testimony), BMS (consultancy), PeerVoice (interview), Pfizer (Scientific Committee Pfizer Forschungspreis) and WebMD-Medscape (faculty activity); non-remunerated advisory roles for Pfizer, ProteoMediX and Unicancer; and other non-remunerated activities for ASCO (guest engagement agreement) and AstraZeneca (senior executive meeting). GG reports personal travel expenses from Amgen, AstraZeneca, Bayer, BMS, MSD and Novartis/AAA; institutional fees for advisory board membership from Astellas, AstraZeneca, Bayer, BMS, Curium, Eisai, Gilead, Ipsen, Janssen and Pfizer; and institutional fees as an invited speaker from Amgen, AstraZeneca, Bayer, BMS, Ipsen, Janssen, MSD and Novartis/AAA. NDJ reports personal fees for advisory board membership from AstraZeneca, Bayer, Clovis, Janssen, Merck, Novartis and Sanofi; personal fees as an invited speaker from MSD UK and Novartis; institutional fees for expert testimony from Janssen and Sanofi; and institutional funding as coordinating PI from Astellas, AstraZeneca, Janssen and Novartis. DEO-L reports personal fees as an invited speaker from Astellas, Curium and Ipsen; personal fees for an expert role in EAU/European Association of Nuclear Medicine (EANM) Consensus Statements from Janssen; other personal fees for compensation video registration over the mechanism of action of Xofigo from Bayer; institutional fees for advisory board membership from Novartis; institutional fees as an invited speaker from EANM, EAU, ESMO and European Society of Radiology; and an institutional research grant from Curium. PO reports personal fees for advisory board membership from AstraZeneca, Bayer, Janssen, MSD and Novartis; personal fees as an invited speaker from Bayer and Micropos; personal fees for Independent Data Monitoring Committee (IDMC) membership from Telix; other personal fees from Recordati (participation in non-branded patient video on ADT side-effects); and an institutional research grant from Bayer. AP reports personal fees as an invited speaker from Siemens Healthineers; personal stocks/shares in Lucida Medical; and an institutional research grant from Siemens Healthineers. CP reports personal fees for IDMC membership from Telix; and institutional fees for advisory board membership from Janssen and Novartis. RMR-P reports personal fees as an invited speaker from Bayer, Bracco, Ipsen and Janssen; and personal fees for expert testimony from Incepto. MAR reports personal fees for scientific advisory board membership from NeoGenomics; personal stocks/shares in Owkin and Verintas Therapeutics; a non-remunerated role as PI for a research project supported by Roche; and a non-remunerated research collaboration with Genentech. FS reports personal fees for advisory board membership from Astellas, AstraZeneca, Bayer, BMS, Janssen, Merck, Novartis, Pfizer and Sumitomo; institutional fees as local PI for

Astellas, Bayer, BMS, Janssen, Merck, Novartis, Pfizer and Sanofi; institutional fees as coordinating PI for AstraZeneca; and non-remunerated roles as PI for AbbVie, AstraZeneca, Bayer and Novartis. CS reports personal fees for advisory board membership from AdvanCell, Astellas, Bayer, BMS, Genentech/Roche and Pfizer; personal fees for consultancy from AdvanCell, Amgen, Astellas, Bayer, Genentech/Roche, Janssen, Novartis and Pfizer; personal stocks/shares from AdvanCell and Perthera; institutional licensing fees from Exelixis; and institutional research grants from Astellas, Bayer, Dendreon, Janssen, Pfizer and Sanofi. DT reports personal fees for advisory board membership from A3P Biomedical, Astellas, AstraZeneca, Bayer, Novartis, Pfizer, Roche and Veracyte; personal fees as an invited speaker from Amgen, APOGEEPA, Ipsen, Janssen and Takeda; and an institutional research grant from Janssen. BT reports personal fees for advisory board membership from Amgen, Astellas, AstraZeneca, Bayer, Janssen, MSD, Myovant, Novartis, Pfizer and Sanofi; personal fees as an invited speaker from Accord, Amgen, Astellas and Ferring; personal fees for expert testimony from Astellas; a non-remunerated role as past president of the Board of Directors for the European Organisation of Research and Treatment of Cancer (EORTC); and a non-remunerated role as member of the Board of Directors for the International Society for the Study and Exchange of Evidence from Clinical Research and Medical Experience. ACT reports personal fees as an invited speaker from Astellas, Bayer, Elekta and Janssen; personal fees for role as GU Editor of the *International Journal of Radiation Oncology Biology Physics (IJROBP)*; institutional fees as an invited speaker from Accuray; institutional research grants from Accuray, Artera, Elekta and Varian; institutional fees as consortium steering committee chair for Elekta; non-remunerated role as an editorial team leader for *IJROBP*; non-remunerated advisory role for the Prostate Cancer UK Clinical Advisory Committee; and non-remunerated member of the American Society for Radiation Oncology and the European Society for Radiotherapy and Oncology (ESTRO). TZ reports personal fees as an invited speaker from EAU, European Multidisciplinary Congress on Urological Cancers (EMUC) and ESMO; personal travel expenses from Ferring; institutional fees for advisory board membership from Accord and Astellas; institutional fees as an invited speaker from Abbott, Debiopharm, Janssen, Silvio Grasso Consulting, Swiss Cancer Institute; institutional research grants from Debiopharm and Varian; non-remunerated advisory role as ESTRO representative for the EMUC; non-remunerated leadership role as Chair of the Guidelines Committee for ESTRO; non-remunerated role as member of the Board of Directors for Fond'Action, Groupe Francophone Radiothérapie Urologique and the International Stereotactic Radiosurgery Society (ISRS); non-remunerated member of the scientific board for Swiss Cancer Institute; and non-remunerated membership of EORTC, ESMO, ESTRO, ISRS and the Scientific Association of Swiss Radiation Oncology. KF reports personal fees as an invited speaker from CANCERODIGEST, Clinical Care Options, Darman Strategik Numerik, eChinaHealth, ED

Medresources, Epics, Health Podcast, Hopes, Medscape, Oseus, PeerVoice, Research to Practice, Tactics and UroToday; personal fees for expert testimony from Access Infinity, AriVan, Axiom, Globe Life Sciences, MD to Market, PSI and REACH Market Research; personal fees providing comments on new data from Cancer Expert Now; institutional fees for advisory board membership from Astellas, AstraZeneca, Bayer, Daiichi Sankyo, Janssen, MSD, Novartis/AAA and Pfizer; institutional fees as an invited speaker from Astellas, AstraZeneca, Bayer, Janssen, MSD, Novartis and Pfizer; institutional research grants as a trial chair from AstraZeneca, Bayer, BMS, Janssen, MSD, Orion and Pfizer; institutional funding as coordinating PI from Novartis; and non-remunerated activities as PI for AstraZeneca, Bayer, BMS, Clovis, Merck, Novartis/AAA, Orion and Pfizer.

REFERENCES

1. Distler FA, Radtke JP, Bonekamp D, et al. The value of PSA density in combination with PI-RADS™ for the accuracy of prostate cancer prediction. *J Urol.* 2017;198(3):575-582.
2. Kawada T, Shim SR, Quhal F, et al. Diagnostic accuracy of liquid biomarkers for clinically significant prostate cancer detection: a systematic review and diagnostic meta-analysis of multiple thresholds. *Eur Urol Oncol.* 2024;7(4):649-662.
3. Drost FH, Osses DF, Nieboer D, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. *Cochrane Database Syst Rev.* 2019;4(4):CD012663.
4. James ND, Tannock I, N'Dow J, et al. The Lancet Commission on prostate cancer: planning for the surge in cases. *Lancet.* 2024;403(10437):1683-1722.
5. Roobol MJ, Verbeek JFM, van der Kwast T, et al. Improving the Rotterdam European Randomized Study of screening for prostate cancer risk calculator for initial prostate biopsy by incorporating the 2014 International Society of Urological Pathology Gleason grading and cribriform growth. *Eur Urol.* 2017;72(1):45-51.
6. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. *N Engl J Med.* 2018;378(19):1767-1777.
7. Rouvière O, Puech P, Renard-Penna R, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naïve patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. *Lancet Oncol.* 2019;20(1):100-109.
8. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. *Lancet.* 2017;389(10071):815-822.
9. Bryant RJ, Marian IR, Williams R, et al. Local anaesthetic transperineal biopsy versus transrectal prostate biopsy in prostate cancer detection (TRANSLATE): a multicentre, randomised, controlled trial. *Lancet Oncol.* 2025;26(5):583-595.
10. Hu JC, Assel M, Allaf ME, et al. Transperineal versus transrectal magnetic resonance imaging-targeted and systematic prostate biopsy to prevent infectious complications: the PREVENT randomized trial. *Eur Urol.* 2024;86(1):61-68.
11. Hugosson J, Månnsson M, Wallström J, et al. Prostate cancer screening with PSA and MRI followed by targeted biopsy only. *N Engl J Med.* 2022;387(23):2126-2137.
12. Schoots IG, Padhani AR. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. *BJU Int.* 2021;127(2):175-178.
13. Kinnaird A, Luger F, Cash H, et al. Micrultrasonography-guided vs MRI-guided biopsy for prostate cancer diagnosis: the OPTIMUM randomized clinical trial. *JAMA.* 2025;333(19):1679-1687.

14. van Leenders GJLH, van der Kwast TH, Grignon DJ, et al. The 2019 International Society of Urological Pathology (ISUP) consensus conference on grading of prostatic carcinoma. *Am J Surg Pathol.* 2020;44(8):e87-e99.
15. Mano R, Tamir S, Kedar I, et al. Malignant abnormalities in male BRCA mutation carriers: results from a prospectively screened cohort. *JAMA Oncol.* 2018;4(6):872-874.
16. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Prostate Cancer V.4.2026. © National Comprehensive Cancer Network, Inc. 2026. All rights reserved. Accessed January 15, 2026. To view the most recent and complete version of the guideline, go online to [NCCN.org](https://www.nccn.org).
17. Union for International Cancer Control. *TNM Classification of Malignant Tumours*. 9th ed. Oxford, UK: John Wiley & Sons, Ltd; 2025.
18. de Vos II, Luiting HB, Roobol MJ. Active surveillance for prostate cancer: past, current, and future trends. *J Pers Med.* 2023;13(4):629.
19. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. *Lancet.* 2020;395(10231):1208-1216.
20. Chow KM, So WZ, Lee HJ, et al. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: a systematic review and meta-analysis. *Eur Urol.* 2023;84(1):36-48.
21. Spratt DE, Tang S, Sun Y, et al. Artificial intelligence predictive model for hormone therapy use in prostate cancer. *NEJM Evid.* 2023;2(8): EVIDOa2300023.
22. Spratt DE, Liu VYT, Michalski J, et al. Genomic classifier performance in intermediate-risk prostate cancer: results from NRG oncology/RTOG 0126 randomized phase 3 trial. *Int J Radiat Oncol Biol Phys.* 2023;117(2):370-377.
23. Weiner AB, Kakani P, Armstrong AJ, et al. Risk stratification of patients with recurrence after primary treatment for prostate cancer: a systematic review. *Eur Urol.* 2024;86(3):200-210.
24. Boyle HJ, Alibhai S, Decoster L, et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. *Eur J Cancer.* 2019;116:116-136.
25. Hamdy FC, Donovan JL, Lane JA, et al. Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. *N Engl J Med.* 2023;388(17):1547-1558.
26. Holmberg L, Garmo H, Andersson SO, et al. Radical prostatectomy or watchful waiting in early prostate cancer. *N Engl J Med.* 2024;391(14): 1362-1364.
27. Wilt TJ, Vo TN, Langsetmo L, et al. Radical prostatectomy or observation for clinically localized prostate cancer: extended follow-up of the prostate cancer intervention versus observation trial (PIVOT). *Eur Urol.* 2020;77(6):713-724.
28. Dinneen E, Almeida-Magana R, Al-Hammouri T, et al. Effect of NeuroSAFE-guided RARP versus standard RARP on erectile function and urinary continence in patients with localised prostate cancer (NeuroSAFE PROOF): a multicentre, patient-blinded, randomised, controlled phase 3 trial. *Lancet Oncol.* 2025;26(4):447-458.
29. Lestingi JFP, Guglielmetti GB, Trinh QD, et al. Extended versus limited pelvic lymph node dissection during radical prostatectomy for intermediate- and high-risk prostate cancer: early oncological outcomes from a randomized phase 3 trial. *Eur Urol.* 2021;79(5):595-604.
30. Touijer KA, Sjoberg DD, Benfante N, et al. Limited versus extended pelvic lymph node dissection for prostate cancer: a randomized clinical trial. *Eur Urol Oncol.* 2021;4(4):532-539.
31. Touijer KA, Vertosick EA, Sjoberg DD, et al. Pelvic lymph node dissection in prostate cancer: update from a randomized clinical trial of limited versus extended dissection. *Eur Urol.* 2025;87(2):253-260.
32. Roberts MJ, Cornford P, Tilki D. Oncological benefits of extended pelvic lymph node dissection: more fog or clarity to the debate? *Eur Urol.* 2025;87(2):261-263.
33. Tosco L, Briganti A, D'Amico AV, et al. Systematic review of systemic therapies and therapeutic combinations with local treatments for high-risk localized prostate cancer. *Eur Urol.* 2019;75(1):44-60.
34. Devos G, Tosco L, Baldewijns M, et al. ARNEO: a randomized phase II trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer. *Eur Urol.* 2023;83(6):508-518.
35. McKay RR, Berchuck J, Kwak L, et al. Outcomes of post-neoadjuvant intense hormone therapy and surgery for high risk localized prostate cancer: results of a pooled analysis of contemporary clinical trials. *J Urol.* 2021;205(6):1689-1697.
36. Gongora M, Stranne J, Johansson E, et al. Characteristics of patients in SPCG-15-a randomized trial comparing radical prostatectomy with primary radiotherapy plus androgen deprivation therapy in men with locally advanced prostate cancer. *Eur Urol Open Sci.* 2022;41:63-73.
37. Widmark A, Klepp O, Solberg A, et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. *Lancet.* 2009;373(9660): 301-308.
38. Warde P, Mason M, Ding K, et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. *Lancet.* 2011;378(9809):2104-2111.
39. Michalski JM, Moughan J, Purdy J, et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial. *JAMA Oncol.* 2018;4(6):e180039.
40. Hennequin C, Sargos P, Roca L, et al. Long-term results of dose escalation (80 vs 70 Gy) combined with long-term androgen deprivation in high-risk prostate cancers: GETUG-AFU 18 randomized trial. *J Clin Oncol.* 2024;42(suppl 4):LBA259.
41. Dearnaley D, Syndikus I, Mossop H, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. *Lancet Oncol.* 2016;17(8):1047-1060.
42. Lee WR, Dignam JJ, Amin MB, et al. Randomized phase III non-inferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. *J Clin Oncol.* 2016;34(20): 2325-2332.
43. Kishan AU, Sun Y, Tree AC, et al. Hypofractionated radiotherapy for prostate cancer (HYDRA): an individual patient data meta-analysis of randomised trials in the MARCAP consortium. *Lancet Oncol.* 2025;26(4):459-469.
44. van As N, Griffin C, Tree A, et al. Phase 3 trial of stereotactic body radiotherapy in localized prostate cancer. *N Engl J Med.* 2024;391(15): 1413-1425.
45. Nilsson P, Gunnlaugsson A, Beckman L, et al. 4981 Ultra-hypofractionated radiotherapy for localised prostate cancer: 10-year outcomes of the HYPO-RT-PC phase 3 trial (ISRCTN45905321). *Radiother Oncol.* 2025;206(suppl 1):S4414-S4415.
46. Lawton CA, DeSilvio M, Roach M 3rd, et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. *Int J Radiat Oncol Biol Phys.* 2007;69(3):646-655.
47. Murthy V, Maitre P, Kannan S, et al. Prostate-only versus whole-pelvic radiation therapy in high-risk and very high-risk prostate cancer (POP-RT): outcomes from phase III randomized controlled trial. *J Clin Oncol.* 2021;39(11):1234-1242.
48. Kishan AU, Sun Y, Hartman H, et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. *Lancet Oncol.* 2022;23(2):304-316.
49. Parker CC, Petersen PM, Cook AD, et al. Timing of radiotherapy (RT) after radical prostatectomy (RP): long-term outcomes in the RADICALS-RT trial (NCT00541047). *Ann Oncol.* 2024;35(7):656-666.
50. Kneebone A, Fraser-Browne C, Duchesne GM, et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. *Lancet Oncol.* 2020;21(10): 1331-1340.
51. Sargos P, Chabaud S, Latorzeff I, et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation

therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. *Lancet Oncol.* 2020;21(10):1341-1352.

52. Parker CC, Kynaston H, Cook AD, et al. Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial. *Lancet.* 2024;403(10442):2416-2425.
53. Parker CC, Clarke NW, Cook AD, et al. Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial. *Lancet.* 2024;403(10442):2405-2415.
54. Valerio M, Cerantola Y, Eggener SE, et al. New and established technology in focal ablation of the prostate: a systematic review. *Eur Urol.* 2017;71(1):17-34.
55. van der Poel HG, van den Bergh RCN, Briers E, et al. Focal therapy in primary localised prostate cancer: the European Association of Urology Position in 2018. *Eur Urol.* 2018;74(1):84-91.
56. Attard G, Murphy L, Clarke NW, et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. *Lancet.* 2022;399(10323):447-460.
57. Tilki D, Chen MH, Wu J, et al. Adjuvant versus early salvage radiation therapy for men at high risk for recurrence following radical prostatectomy for prostate cancer and the risk of death. *J Clin Oncol.* 2021;39(20):2284-2293.
58. Preissner F, Marchionni M, Nazzani S, et al. The impact of lymph node metastases burden at radical prostatectomy. *Eur Urol Focus.* 2019;5(3):399-406.
59. Bianchi L, Nini A, Bianchi M, et al. The role of prostate-specific antigen persistence after radical prostatectomy for the prediction of clinical progression and cancer-specific mortality in node-positive prostate cancer patients. *Eur Urol.* 2016;69(6):1142-1148.
60. Messing EM, Manola J, Sarosdy M, et al. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. *N Engl J Med.* 1999;341(24):1781-1788.
61. Tilki D, Preissner F, Tennstedt P, et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. *BJU Int.* 2017;119(5):717-723.
62. Tilki D, Chen MH, Wu J, et al. Persistent prostate-specific antigen following radical prostatectomy for prostate cancer and mortality risk. *JAMA Oncol.* 2025;11(5):502-510.
63. Farolli A, Gafita A, Calais J, et al. ^{68}Ga -PSMA-11 positron emission tomography detects residual prostate cancer after prostatectomy in a multicenter retrospective study. *J Urol.* 2019;202(6):1174-1181.
64. Latorzeff I, Guerif S, Castan F, et al. GETUG-AFU 22 phase II randomized trial evaluating outcomes of post-operative immediate salvage radiation therapy with or without ADT for patients with persistently elevated PSA level. *Int J Radiat Oncol Biol Phys.* 2022;114(5):1063.
65. Walz J, Chun FK, Klein EA, et al. Risk-adjusted hazard rates of biochemical recurrence for prostate cancer patients after radical prostatectomy. *Eur Urol.* 2009;55(2):412-419.
66. Roach M 3rd, Hanks G, Thammas H Jr, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. *Int J Radiat Oncol Biol Phys.* 2006;65(4):965-974.
67. Van den Broeck T, van den Bergh RCN, Briers E, et al. Biochemical recurrence in prostate cancer: the European Association of Urology Prostate Cancer Guidelines Panel Recommendations. *Eur Urol Focus.* 2020;6(2):231-234.
68. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. *JAMA.* 1999;281(17):1591-1597.
69. Trock BJ, Han M, Freedland SJ, et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. *JAMA.* 2008;299(23):2760-2769.
70. Van den Broeck T, van den Bergh RCN, Arfi N, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. *Eur Urol.* 2019;75(6):967-987.
71. Jairath NK, Dal Pra A, Vince R Jr, et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. *Eur Urol.* 2021;79(3):374-383.
72. Pienta KJ, Gorin MA, Rowe SP, et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with ^{18}F -DCFPyL in prostate cancer patients (OSPREY). *J Urol.* 2021;206(1):52-61.
73. Olivier P, Giraudet AL, Skarjeti A, et al. Phase III study of ^{18}F -PSMA-1007 versus ^{18}F -fluorocholine PET/CT for localization of prostate cancer biochemical recurrence: a prospective, randomized, crossover multicenter study. *J Nucl Med.* 2023;64(4):579-585.
74. Wu LM, Xu JR, Gu HY, et al. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. *Clin Oncol (R Coll Radiol).* 2013;25(4):252-264.
75. Jani AB, Schreibmann E, Goyal S, et al. ^{18}F -fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. *Lancet.* 2021;397(10288):1895-1904.
76. Deek MP, Van der Eecken K, Sutera P, et al. Long-term outcomes and genetic predictors of response to metastasis-directed therapy versus observation in oligometastatic prostate cancer: analysis of STOMP and ORIOLE trials. *J Clin Oncol.* 2022;40(29):3377-3382.
77. Phillips R, Shi WY, Deek M, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. *JAMA Oncol.* 2020;6(5):650-659.
78. Harrow S, Palma DA, Olson R, et al. Stereotactic radiation for the comprehensive treatment of oligometastases (SABR-COMET): extended long-term outcomes. *Int J Radiat Oncol Biol Phys.* 2022;114(4):611-616.
79. Ost P, Siva S, Brabrand S, et al. Salvage metastasis-directed therapy versus elective nodal radiotherapy for oligorecurrent nodal prostate cancer metastases (PEACE V-STORM): a phase 2, open-label, randomised controlled trial. *Lancet Oncol.* 2025;26(6):695-706.
80. Duchesne GM, Woo HH, Bassett JK, et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. *Lancet Oncol.* 2016;17(6):727-737.
81. Crook JM, O'Callaghan CJ, Duncan G, et al. Intermittent androgen suppression for rising PSA level after radiotherapy. *N Engl J Med.* 2012;367(10):895-903.
82. Loblaw A, Bassett J, D'Este C, et al. Timing of androgen deprivation therapy for prostate cancer patients after radiation: planned combined analysis of two randomized phase 3 trials. *J Clin Oncol.* 2018;36(suppl 15):5018.
83. Freedland SJ, de Almeida Luz M, De Giorgi U, et al. Improved outcomes with enzalutamide in biochemically recurrent prostate cancer. *N Engl J Med.* 2023;389(16):1453-1465.
84. Shore ND, Luz MA, De Giorgi U, et al. Improved survival with enzalutamide in biochemically recurrent prostate cancer. *N Engl J Med.* 2025. In press: <https://doi.org/10.1016/10.1056/NEJMoa2510310>.
85. Wiegel T, Bottke D, Steiner U, et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. *J Clin Oncol.* 2009;27(18):2924-2930.
86. Bolla M, van Poppel H, Collette L, et al. Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). *Lancet.* 2005;366(9485):572-578.
87. Thompson IM, Tangen CM, Paradelo J, et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of

metastases and improves survival: long-term followup of a randomized clinical trial. *J Urol.* 2009;181(3):956-962.

88. Hackman G, Taari K, Tammela TL, et al. Randomised trial of adjuvant radiotherapy following radical prostatectomy versus radical prostatectomy alone in prostate cancer patients with positive margins or extracapsular extension. *Eur Urol.* 2019;76(5):586-595.

89. Vale CL, Fisher D, Kneebone A, et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. *Lancet.* 2020;396(10260):1422-1431.

90. Pommier P, Xie W, Ravi P, et al. Prognostic factors in post-prostatectomy salvage radiotherapy setting with and without hormone therapy: an individual patient data analysis of randomized trials from ICECaP database. *Radiother Oncol.* 2024;201:110532.

91. Carrie C, Magne N, Burban-Provost P, et al. Interest of short hormone therapy (HT) associated with radiotherapy (RT) as salvage treatment for metastatic free survival (MFS) after radical prostatectomy (RP): update at 9 years of the GETUG-AFU 16 phase III randomized trial (NCT00423475). *J Clin Oncol.* 2019;37(suppl 15):5001.

92. Pollack A, Garrison TG, Balogh AG, et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SUPPORT): an international, multicentre, randomised phase 3 trial. *Lancet.* 2022;399(10338):1886-1901.

93. Shipley WU, Seiferheld W, Lukka HR, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. *N Engl J Med.* 2017;376(5):417-428.

94. Valle LF, Lehrer EJ, Markovic D, et al. A systematic review and meta-analysis of local salvage therapies after radiotherapy for prostate cancer (MASTER). *Eur Urol.* 2021;80(3):280-292.

95. Creta M, Shariat SF, Marra G, et al. Local salvage therapies in patients with radio-recurrent prostate cancer following external beam radiotherapy: a systematic review and meta-analysis. *Prostate Cancer Prostatic Dis.* 2025;28(3):578-591.

96. Cherny NI, Oosting SF, Dafni U, et al. ESMO-Magnitude of clinical benefit scale version 2.0 (ESMO-MCBS v2.0). *Ann Oncol.* 2025;36(8):866-908.

97. Dykewicz CA. Summary of the guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. *Clin Infect Dis.* 2001;33(2):139-144 [adapted from: Gross PA, Barrett TL, Dellinger EP, et al. Purpose of quality standards for infectious diseases. *Clin Infect Dis.* 1994;18(3):421].