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Despite American Heart Association, European Society of Cardiology and World
Health Organization (AHA/ESC/WHO) guidelines uniformly recommending

150 min week ™ of moderate-to-vigorous physical activity (MVPA) for both sexes,
asubstantial ‘gender gap’ persists in exercise capacity and guideline adherence,
anditsimpacton coronary heart disease (CHD) development and prognosis
remains underexplored. Here we analyzed the accelerometer-measured MVPA
0f 80,243 CHD-free participants to assess CHD incidence and 5,169 patients
with CHD to evaluate all-cause mortality. Compared with non-adherent
counterparts, guideline-adherent participants showed a 22%lower CHD riskin
female individuals (hereinafter referred to as females) and a17% lower CHD risk
inmaleindividuals (hereinafter referred to as males; (P, eraction = 0-009). Notably,
femalesachieved a CHD risk reduction of 30% (hazard ratio (HR) = 0.70) with
250 min week ' of MVPA, whereas males required 530 min week ™ for comparable
benefits. Among patients with CHD, active females experienced greater
mortality risk reduction than males (HR = 0.30 versus 0.81; P, .craction = 0-004).
Similar sex differences were observed when analyzing guideline-adhering days
(Pinceraction < 0.05). Our findings underscore the value of sex-specific tailored CHD
prevention strategies using wearable devices, which may help bridge the ‘gender
gap’ by motivating females to engage in physical activity.

Coronary heartdisease (CHD) remains the predominant cause of mor-
bidity and mortality worldwide'. Current guidelines from the American
Heart Association?, the European Society of Cardiology® and the
World Health Organization* (AHA/ESC/WHO) all recommend at least
150 min week™ of moderate-to-vigorous physical activity (MVPA)
to prevent the development or progression of CHD. Despite these
guidelines adopting a ‘one-size-fits-all’ approach for both sexes, a
well-documented ‘gender gap’ exists’, with males generally showing
greater capacity than females®. Globally, the prevalence of insufficient
physical activity (PA) was 5 percentage points higher among females

thanmales (33.8% versus 28.7%)’. However, whether and to what extent
sex disparitiesimpact the development and prognosis of CHD remain
underexplored. Understanding sex differences is crucial for tailored
CHD prevention and has potential to bridge the ‘gender gap’ by tailor-
ing PA recommendations.

Recently, the WHO Guideline Development Group endorsed the
advancing surveillance of PA by using a wearable device*, whereas
previous studies mainly relied on self-reported questionnaires that are
prone torecall bias and overestimation®’. By contrast, wearable devices
provide objective and continuous activity monitoring, enabling more
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Table 1| Baseline characteristics of participants in the CHD incidence and mortality study

CHD incidence study

CHD mortality study

Overall (N=80,243)

Female (N=45,986)

Male (N=34,257)

Overall (N=5,169)

Female (N=1,553)

Male (N=3,616)

Age (years) 61.54+7.84 61.16+7.75 62.05+7.94 66.93+5.90 66.36+6.25 6717+5.73
Ethnicity

Asian 3,148 (3.92%) 2,060 (4.48%) 1,088 (3.18%) 141 (2.73%) 63 (4.06%) 78 (2.16%)

Black 2,503 (3.12%) 1,394 (3.03%) 1,109 (3.24%) 172 (3.33%) 50 (3.22%) 122 (3.37%)

Mixed or other 403 (0.50%) 258 (0.56%) 145 (0.42%) 24 (0.46%) 12 (0.77%) 12 (0.33%)

White 74,189 (92.46%) 42,274 (91.93%) 31,915 (93.16%) 4,832 (93.48%) 1,428 (91.95%) 3,404 (94.14%)
Education

College or university 35,525 (44.27%) 19,689 (42.82%) 15,836 (46.23%) 1,662 (32.15%) 480 (30.91%) 1182 (32.69%)

Other 44,718 (55.73%) 26,297 (5718%) 18,421 (53.77%) 3,507 (67.85%) 1,073 (69.09%) 2,434 (67.31%)
Center

England 71,922 (89.63%) 41,236 (89.67%) 30,686 (89.58%) 4,657 (90.09%) 1,400 (90.15%) 3,257 (90.07%)

Scotland 5,256 (6.55%) 3,033 (6.60%) 2,223 (6.49%) 330 (6.38%) 100 (6.44%) 230 (6.36%)

Wales 3,065 (3.82%) 1,717 (3.73%) 1,348 (3.93%) 182 (3.52%) 53 (3.41%) 129 (3.57%)
Townsend deprivation -1.76+2.80 -1.72+2.80 -1.81£2.80 -1.69+2.83 -1.58+2.89 -1.74+2.81
index
BMI (kgm™) 26.60+4.48 26.19+4.79 2715+3.96 28.46+4.65 28.37+5.51 28.49+4.23
Sleep duration (h)

<7 17,371 (21.65%) 9,746 (2119%) 7,625 (22.26%) 1,274 (24.65%) 425 (27.37%) 849 (23.48%)

7-8 57,891 (72.14%) 33,215 (72.23%) 24,676 (72.03%) 3,385 (65.49%) 972 (62.59%) 2,413 (66.73%)

>8 4,981(6.21%) 3,025 (6.58%) 1,956 (5.71%) 510 (9.87%) 156 (10.05%) 354 (9.79%)
Smoking status

Never 46,554 (58.02%) 28,233 (61.39%) 18,321(53.48%) 2,237 (43.28%) 818 (52.67%) 1,419 (39.24%)

Previous 28,344 (35.32%) 15,126 (32.89%) 13,218 (38.58%) 2,548 (49.29%) 638 (41.08%) 1,910 (52.82%)

Current 5,345 (6.66%) 2,627 (5.71%) 2,718 (7.93%) 384 (7.43%) 97 (6.25%) 287 (7.94%)
Alcohol status

Never 2,229 (2.78%) 1,641(3.57%) 588 (1.72%) 191(3.70%) 110 (7.08%) 81(2.24%)

Previous 212 (2.63%) 1,225 (2.66%) 887 (2.59%) 203 (3.93%) 76 (4.89%) 127 (3.51%)

Current 75,902 (94.59%) 43120 (93.77%) 32,782 (95.69%) 4,775 (92.38%) 1,367 (88.02%) 3,408 (94.25%)
Dietary health

Ideal 28,145 (35.07%) 18,053 (39.26%) 10,092 (29.46%) 1,874 (36.25%) 663 (42.69%) 1,211 (33.49%)

Poor 52,098 (64.93%) 27,933 (60.74%) 24,165 (70.54%) 3,295 (63.75%) 890 (57.31%) 2,405 (66.51%)

Charlson comorbidity
index

2.00 (1.00-2.00)

2.00(1.00-2.00)

2.00 (1.00-3.00)

3.00 (2.00-4.00)

3.00(2.00-4.00)

3.00(2.00-4.00)

Hypertension 39,673 (49.44%) 19,904 (43.28%) 19,769 (57.71%) 4,522 (87.48%) 1,271(81.84%) 3,251(89.91%)
Diabetes 3,442 (4.29%) 1,373 (2.99%) 2,069 (6.04%) 834 (16.13%) 217 (13.97%) 617 (17.06%)
Dyslipidemia 47,672 (59.41%) 26,383 (57.37%) 21,289 (62.14%) 4,630 (89.57%) 1,325 (85.32%) 3,305 (91.40%)
Cholesterol-lowering 10,049 (12.52%) 4,054 (8.82%) 5,995 (17.50%) 3,308 (64.00%) 798 (51.38%) 2,510 (69.41%)
medication

Blood pressure 13,140 (16.38%) 6,352 (13.81%) 6,788 (19.81%) 3,342 (64.65%) 868 (55.89%) 2,474 (68.42%)
medication

Insulin therapy 1,743 (217%) 692 (1.50%) 1,051 (3.07%) 432 (8.36%) 97 (6.25%) 335 (9.26%)
Antiplatelet medication 7,712 (9.61%) 3,385 (7.36%) 4,327 (12.63%) 3,121(60.38%) 711 (45.78%) 2,410 (66.65%)
Antianginal medication 5,982 (7.46%) 2,769 (6.03%) 3,213 (9.39%) 2,436 (47.13%) 602 (38.76%) 1,834 (50.72%)
MVPA (minweek™) 189.18+173.76 178.47+166.40 203.56+182.18 126.15+£140.25 102.62+127.59 136.25+144.19
Average acceleration (mg) 208.93+84.56 202.52+77.58 217.55+92.41 180.48+78.53 170.36+71.78 184.82+80.87
Adherence to AHA/ESC/ 38,887 (48.46%) 21,043 (45.76%) 17,844 (52.09%) 1,577 (30.51%) 340 (21.89%) 1,237 (34.21%)
WHO standard®

Adherence to 16,066 (20.02%) 8,360 (18.18%) 7,706 (22.49%) 565 (10.93%) 120 (7.73%) 445 (12.31%)
WHO extended

recommendation®
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Table 1 (continued) | Baseline characteristics of participants in the CHD incidence and mortality study

CHD incidence study

CHD mortality study

Overall (N=80,243) Female (N=45,986)

Male (N=34,257)

Overall (N=5,169) Female (N=1,553) Male (N=3,616)

Days met daily AHA/ESC/  2.92+2.28 2.81£2.30 3.06+2.25 1.98+2.12 1.59+1.95 215217
WHO standard®
Days met daily 1.57+1.89 1.47+1.86 1.71£1.92 0.95+1.56 0.71£1.39 1.05+1.62

WHO extended
recommendation?

Follow-up years 7.88 (7.31-8.39) 7.90 (7.35-8.40)

7.85(7.26-8.37)

777 (7.24-8.31) 779 (7.29-8.31) 775 (7.20-8.31)

CHD events 3,764 (4.69%) 1,406 (3.06%)

2,358 (6.88%) - - -

All-cause deaths - - -

593 (11.47%) 117 (7.53%) 476 (13.16%)

Defined as at least 150 min of MVPA per week. *Defined as at least 300 min of MVPA per week. “Defined as number of days with at least 150/7min of MVPA. “Defined as number of days with at

least 300/7min of MVPA.

Table 2 | Sex-specific associations of accelerometer-derived PA with CHD risk in the CHD-free population and mortality risk

in the CHD population
Female Male Pineraction ~ d-FDR
HR (95% Cl) Pvalue HR (95% Cl) Pvalue

CHD risk in the CHD-free population
MVPA, per 30 minweek™ 0.971(0.958-0.985) 3.31x10™° 0.981(0.973-0.990) 178x10° 8.41x10* 0.004
Adherence to the AHA/ESC/WHO standard?® 0.780(0.689-0.884) 9.36x10°  0.830(0.760-0.906)  2.82x10° 0.009 0.016
Adherence to the WHO extended recommendation® 0.789 (0.658-0.947) 0.0Mn 0.888 (0.792-0.994) 0.040 0.019 0.019
Days adhering to the average daily AHA/ESC/WHO standard® 0.940 (0.914-0.967) 1.56x10°  0.957 (0.938-0.977) 2.01x10°  0.002 0.005
Days adhering to the average daily WHO 0.943(0.908-0.979) 0.002 0.956 (0.932-0.980) 411x10™*  0.016 0.019
extended recommendation®

Mortality risk in the CHD population
MVPA, per 30 minweek™ 0.883 (0.804-0.970) 0.009 0.965 (0.940-0.989) 0.006 0.005 0.012
Adherence to the AHA/ESC/WHO standard? 0.300(0129-0.699) 0.005 0.808 (0.647-1.009) 0.060 0.004 0.012
Adherence to the WHO extended recommendation® 0.594 (0.185-1.909) 0.382 0.840 (0.602-1.170) 0.302 0.332 0.332
Days adhering to the average daily AHA/ESC/WHO standard® 0.850(0.734-0.984) 0.030 0.922 (0.876-0.971) 0.002 0.052 0.065
Days adhering to the average daily WHO extended 0.729 (0.552-0.963) 0.026 0.911(0.847-0.980) 0.012 0.025 0.042

recommendation?

The HR and 95% Cl were derived from multivariable Cox proportional hazard models adjusted for PA intensity, demographics, lifestyles and medical conditions, as well as the polygenetic risk
score of CHD in the CHD incidence study, and the use of CHD treatment medicines (antiplatelet medication, antianginal medication) in the CHD mortality study. Likelihood ratio tests were used
to test the interactions, by comparing models with and without interaction terms between sex and PA measures. All statistical tests were two sided, and FDR adjustments were used for multiple
comparisons. *Defined as at least 150 min of MVPA per week. ®Defined as at least 300 min of MVPA per week. “Defined as number of days with at least 150/7min of MVPA. “Defined as number of

days with at least 300/7 min of MVPA.

precision interventions'. In addition, with the growing popularity of
consumer wearables, their roles in personalized health assessment and
PAtrackingare increasingly important™. Therefore, a prospective study
using wearable accelerometer-derived data is essential to elucidate
sex-specific benefits, further advance CHD precision management
and modify the development or progression of CHD.

In our study, leveraging accelerometer-derived PA data of over
85,000 participants from the UK Biobank, we investigated sex differ-
ences in the association of PA with both the incidence risk of CHD in
the CHD-free population and the all-cause mortality risk in patients
with CHD.

Results

Population characteristics

In the CHD incidence study of 80,243 participants free of CHD
(age: 61.54 + 7.84 years; 57.3% female), there were 3,764 CHD events
over a median follow-up of 7.88 years. In the CHD mortality study of
5,169 CHD-established participants (age: 66.93 + 5.90 years; 30.0%
female), 593 all-cause deaths occurred during a median follow-up of
7.77 years (Table 1). Comprehensive comparisons of participant char-
acteristics across sexes and guideline-adherent groups are presentedin

Table1and Supplementary Tables1and 2. Overall, 48.46% of CHD-free
participants met the minimum MVPA time (150 min week™) recom-
mended by AHA/ESC/WHO, whereas only 30.51% of patients with CHD
achieved this target. Furthermore, females lag behind males in both
MVPA durationand intensity, and had alower adherence to guidelines
(Table 1and Supplementary Figs. 1-3).

Sex differences in associations of PA measures with CHD
incidence risk in the CHD-free population

Inthe CHD incidence study, per 30 min week ' increase of MVPA dura-
tion was associated with a lower CHD risk in females (hazard ratio
(HR) =0.971, 95% confidence interval (CI): 0.958-0.985) and males
(HR =0.981, 95% Cl: 0.973-0.990), indicating a stronger protective
effect in females (Pjyeraciion < 0.001) (Table 2). When stratified by
guideline adherences, the cumulative incidence curves revealed a
reduced risk for those adhering to guidelines across both sexes (both
Prog-rank < 0.001) (Fig. 1a,b). The incidence rate of CHD was 703.53 per
100,000 person-years in physically active males adhering to AHA/
ESC/WHO standard recommendations, compared with 1,143.62
for physically inactive males. A reductionin the CHD incidence rate
was also observed in active females compared with inactive ones
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Fig. 1| Sex-specific cumulative risks of CHD in the CHD-free population

and overall survival in patients with CHD stratified by adherence to PA
recommendations. a,b, Sex-specific cumulative risk of incident CHD in the
CHD-free population stratified by adherence to the AHA/ESC/WHO standard
recommendation (150 min week™) (a) and WHO extended recommendation
(300 min week™) (b). ¢,d, Sex-specific overall survival of patients with CHD
stratified by adherence to the AHA/ESC/WHO standard recommendation

(150 min week™) (c) and WHO extended recommendation (300 min week™) (d).
Cumulative risks and survival differences between groups were assessed using
the two-sided log-rank test. e f, Sex-specific associations and sex differences

between PA guideline adherence and incident CHD risk in the CHD-free
population (AHA/ESC/WHO standard: N,y zpove versusbetow = 21,043 versus 24,943 in
females, and 17,844 versus 16,413 in males; WHO extended: 8,360 versus 37,626 in
females, and 7,706 versus 26,551 in males) (e) and all-cause mortality in patients
with CHD (AHA/ESC/WHO standard: N, aboveversusbelow = 340 versus 1,213 in females,
and 1,237 versus 2,379 in males; WHO extended: 120 versus 1,433 in females, and
445versus 3,171in males) (f). The point estimates and error bars represent the

HR and 95% CI from multivariable Cox proportional hazard models. All statistical
tests were two-sided.

(249.16 versus 519.28 per 100,000 person-years) (Supplementary
Table 3). In addition, we compared the risk of CHD incidence across
levels of guideline adherence using multivariable Cox proportional
hazard models. Specifically, among participants who met the AHA/ESC/
WHO standard recommendations, females experienced a22%relative
reduction in CHD incidence risk (HR = 0.780, 95% CI: 0.689-0.884),

whereas males showed a17% reduction (HR = 0.830, 95% CI: 0.760-
0.906); a significant sex difference was observed (Piyceraction = 0-009)
(Table2 andFig.1e). Asimilar pattern was found while adhering to the
extended recommendation of WHO (HR = 0.789, 95% Cl: 0.658-0.947
for females; HR = 0.888, 95% CI: 0.792-0.994 for males; P=0.019 for
sex difference; Table 2 and Fig. 1).
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Fig. 2| Dose-response associations of MVPA with CHD incidence and mortality
bysex.a,b, The adjusted HRs for associations of MVPA duration with CHD
incidence risk in the CHD-free population (Nemae = 45,986, Nipae = 34,257) (a) and
all-cause mortality risk in patients with CHD (Nemaie = 1,553, Nipaie = 3,616) (b) by

sex. The solid line depicts the estimated HR derived from restricted cubic spline
models, and the shaded area indicates the corresponding 95% CI. Statistical tests
were two sided.

The dose-response associations indicated that to achieve a
reduction in CHD risk of 30% (HR = 0.70), males need to engage in
530 min week™ of MVPA, while only 250 min week ™ was required for
females (Fig. 2a). Compared with females, males needed twofold
engagement of MVPA to achieve equivalent benefit in CHD risk.

Anincrease in number of days adhering to daily AHA/ESC/WHO
guidelines (150/7 min d™) was also associated with a reduced risk of
incident CHD for both sexes. For females, CHD incidence decreased
from 5.2% in those with nonadherent days to 1.5% among participants
engaged in PA every day of the week. Comparatively, a protective gradi-
ent was observed in males, with CHD incidence declining from 10.2%
among inactive ones to 4.7% among those with regular PA engage-
ment (Fig. 3a). The results of Cox models indicated that per 1 day of
adheringto the daily AHA/ESC/WHO recommendationincrement was
related to arelatively lower risk of CHD in both females (HR = 0.940,
95% CI: 0.914-0.967) and males (HR = 0.957,95% Cl: 0.938-0.977). Sex
significantly modified the effect of number of days adhering to the
recommendation on CHD incidence risk (Pipraction = 0-002) (Table 2
and Fig. 3e). Similar results were found when analyzing according to
the WHO extended recommendation (HR = 0.943,95% Cl: 0.908-0.979
for females; HR = 0.956, 95% CI: 0.932-0.980 for males; P=0.016 for
sex interaction) (Fig. 3 and Table 2).

Sex differences in associations of PA measures with all-cause
mortality risk in patients with CHD

In the CHD mortality study, protective effects of MVPA duration on
the all-cause mortality of patients with CHD were present in both
females (HR = 0.883, 95% CI: 0.804-0.970) and males (HR = 0.965,
95% CI: 0.940-0.989), while the benefits were different across sexes
(Pinteraction = 0.005) (Table 2). Kaplan-Meier curves showed significant
survival differences across PA-guideline-adherent groups for both
sexes (Piog.rank < 0.05for both sexes) (Fig. 1c,d). For female patients with
CHD, only 340 participants met the AHA/ESC/WHO standard recom-
mendations, of whom 6 (1.76%) deaths were registered. In females with
PA below the guidelines, 111 0f 1,213 (9.15%) died during the follow-up
period. Male patients with CHD showed similar but attenuated benefits;
guideline-adherent patients (360 of 2,379, 15.13%) showed a substan-
tially low mortality rate, compared with nonadherent counterparts
(116 0f1,237,9.38%) (Supplementary Table 3). Inaddition, multivariable
Coxregressionmodels indicated an HR 0f 0.300 (95% Cl: 0.129-0.699)
for females and 0.808 (95% CI: 0.647-1.009) for males, and this almost

threefold sex-difference risk was also significant (P;yeraction = 0-004)
(Table 2). Although unadjusted survival curves showed relatively mod-
est disparities between patients with CHD stratified by adherence to
WHO extended recommendations (Pjg..q« < 0.05) (Fig. 1d), no statistical
evidence supports the significant association between mortality risk
reduction and adherence to the WHO extended PA recommendation
in patients with CHD, after adjusting for potential confoundersin the
multivariable Cox models (Table 2).

Figure 2billustrates the sex-specific dose-response relationship
between MVPA and all-cause mortality risk in patients with CHD. The
results showed that,among patients with CHD, male patients required
weekly MVPA engagement nearly 1.7-fold that of females to achieve a
comparable relative reduction of mortality risk, with females having
an MVPA of 51 min week* and males, 85 min week ™.

The trends of mortality rate in patients with CHD suggested a
potential inverse but slightly fluctuant relationship across number of
days adheringto daily PA guidelines (Fig.3c,d), probably owing to the
relatively limited sample size (Supplementary Fig. 2d). Overall, per
additional day meeting the AHA/ESC/WHO guidelines was related to
a15% (HR =0.850, 95% CI: 0.734-0.984) relative reduction in mortality
riskamong female patients with CHD and 8% (HR = 0.922,95% Cl: 0.876~-
0.971) among male patients with CHD (P, ceraction = 0-052) (Table 2 and
Fig.3f). Furthermore, when examining the relationship between days
meeting the WHO extended guidelines and mortality risk in patients
with CHD, a greater benefit was noted in female patients (HR = 0.729,
95% CI: 0.552-0.963) versus males (HR = 0.911, 95% CI: 0.847-0.980)
(Pinceraction = 0.025; Table 2 and Fig. 3f).

Sensitivity analyses

The sex differences in associations of PA measures with both CHD
incidence and mortality remained consistent and robust across
various sensitivity analyses. Multiple models incorporating differ-
ent sets of covariate adjustments were applied to account for the
influence of potential confounders (Supplementary Tables 4-7).
Consistent and significant results were observed when accounting
for the competing risk of death by using Fine and Gray subdistribu-
tion hazard models (Supplementary Table 8), considering alter-
native Cox proportional hazard models with age as the timescale
(Supplementary Table 9), and accounting for sex-specific base-
line hazards by using stratified Cox proportional hazard models
(Supplementary Table 10). We excluded individuals who experienced
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Fig. 3 | Sex-specific rates of CHD incidence and mortality stratified by days
adhering to daily PA recommendations. a,b, Sex-specific CHD incidence
rate in the CHD-free population stratified by days adhering to the AHA/ESC/
WHO standard recommendation (150/7 min d™) (a) and WHO extended
recommendation (300/7 min d) (b). ¢,d, Sex-specific mortality rate in
patients with CHD stratified by days adhering to the AHA/ESC/WHO standard
recommendation (150/7 min d™) (c) and WHO extended recommendation

(300/7 mind™) (d). e,f, Sex-specific associations and sex differences between
days adhering to daily PA recommendations and CHD incidence risk in the
CHD-free population (Ngemaie = 45,986, Ny = 34,257) (e), and all-cause mortality
in patients with CHD (Ngemaie = 1,553, Nipaie = 3,616) (f). The point estimates and
error bars represent the HR and 95% Cl from multivariable Cox proportional
hazard models. Statistical tests were two sided.

outcomes within the first year of follow-up period to mitigate reverse
causality (Supplementary Figs. 4-6 and Supplementary Tables 11
and 12). Furthermore, sensitivity analyses using imputed datasets,
comprising 88,611 participants in the CHD incidence study and 5,476
participants in the CHD mortality study, consistently revealed that
females derived greater benefit in reducing CHD incidence among
the CHD-free population and all-cause mortality among patients
with CHD with equivalent doses of PA (Supplementary Figs. 7-9 and
Supplementary Tables 13 and 14).

Discussion

In this large-scale prospective study using PA data measured by
wrist-worn accelerometers among over 85,000 participants, we
observed substantial sex differences in clinical benefits of PA
with CHD incidence and mortality. Specifically, to achieve a 30%
relative reduction in CHD incidence risk, males need to engage in
530 min of MVPA per week, whereas only half-time engagement
(250 min week™) is needed for females to achieve a comparable
benefit. For the all-cause mortality in patients with CHD, although
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Fig. 4| Centralillustration of the study design and summary of findings.
Wrist-worn accelerometer-derived PA data of 80,243 CHD-free participants
and 5,169 patients with CHD were used to examine sex-specific dose-response
associations between MVPA duration and CHD outcomes. HRs (solid line)

and 95% Cl (shaded area) were estimated from restricted cubic spline models.
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Sex-specific associations between guideline adherence and CHD outcomes
were shown as HRs (point estimates) and 95% Cls (error bars), estimated from
multivariable Cox proportional hazard models. Sex differences were assessed
by two-sided likelihood ratio tests. Orange lines and areas represent females.
Green lines and areas represent males.

both sexes adhere to equivalent MVPA recommended by AHA/ESC/
WHO (150 min week™), female patients with CHD derived a substantial
threefold reduction in mortality risk (Fig. 4). Our findings may pro-
vide insights into sex-specific prevention of CHD by using wearable
devices, and encourage females to engage in PA.

Despite accumulating calls for sex-specific guidelines, few stud-
ies have focused on sex differences in risk stratification, prevention
and prognosis of CHD*'%. A prospective study investigating the asso-
ciation of questionnaire-based MVPA with all-cause and cardiovas-
cular mortality risk in a general population of US adults showed that
females derived greater mortality reductions than males®. Regarding
CHD-specific evidence, in a meta-analysis of 33 studies, the authors
conducted an exploratory analysis based on 2 studies with sufficient
data for interaction analysis, and reported a potential sex difference,
but acknowledged biases induced by insufficient data collection and
heterogeneity of study design and measures across studies'. Extend-
ing from previous work, our study used objective PA measures from
wearable devices and confirmed similar sex interactions inboth CHD
risk prevention in the CHD-free population and mortality prevention
inthe established CHD population.

Some possible factors might contribute to sex differences in the
beneficial effects of PA. Physiologically, circulating estrogen levels are
much higherinfemales thanin males, and estrogen can promote body
fatloss during PA”. As shown inarandomized controlled trial, estrogen
supplementation canincrease lipid oxidationin men during exercise'®,
whichis established toimprove clinical outcomes of CHD". In addition,

another possible reason could be the considerable sex disparitiesinthe
morphological composition of skeletal muscle'®. Specifically, males
have agreater percentage of type Ilmuscle fibers, whereas the skeletal
muscle of femalesis dominated by type I muscle fibers, leading to dis-
paritiesin muscle metabolism'®, Males have greater glycolytic capacity,
while females are characterized with greater whole-muscle oxidative
capacity”. These differences may contribute to the observed increased
sensitivity to PA and greater clinical benefit in females. Nevertheless,
the underlying mechanisms remain to be elucidated.

Our study has potential clinical implications and several strengths.
Current ‘one-size-fits-all’ guidelines have uniform recommendations
for females and males, assuming that PA amounts and benefits are the
same for bothsexes**. By contrast, females are more physically inactive
and less likely to achieve management targets of CHD risk factors®, and
sucha‘gender gap’ might yield worse clinical outcomesin women. The
landmark 2010 Institute of Medicine’s publication called for attentions
tosex differencesin CHD management?®. Asreported, the focus on sex
and gender research has successfully reduced 30% of CVD deaths in
females?. Our study highlighted the necessity of sex-specificindividua-
lized managementin CHD prevention. Compared with maleindividuals,
females derive equivalent health benefits with only half the exercise
time. The findings might have potential to encourage females to engage
in PA. In addition, with the rising popularity of wrist-worn wearables
revolutionizing PA monitoring®, our results suggest the promise of
smart wearable devices for future CHD management. Moreover, the
large-scale population, prospective design, objective PA measures,
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careful covariate consideration and comprehensive sensitivity analyses
might strengthen our findings.

Several limitations should be considered when interpreting our
findings. First, the generalizability of our findings might be limited by
ancestry and geographics. The participants in UK Biobank were mostly
white, had healthier lifestyles and lived in areas with less socioeconomic
deprivation. Further studies are warranted to explore the relation-
ships between PA and both CHD incidence and mortality in diverse
populations. Second, although our analyses included over 85,000
participants, the sample size of the CHD mortality study was relatively
small and the number of documented CHD-specific deaths was rela-
tively limited, which precluded robust analyses of CHD-specific mortal-
ity. Third, our results suggested asubstantial reductionin mortality risk
associated with PAamong elderly females with established CHD, which
was comparable to findings from previous accelerator-based studies
insimilar populations of elderly females with or without CHD**?*, Nev-
ertheless, this result should be interpreted with caution owing to the
limited sample size, and further validationin large-scale CHD cohorts,
particularly those with objectively measured PA data from wearable
devices, iswarranted. Fourth, given the observational design, causality
cannot be definitively established. Nevertheless, we conducted aseries
of sensitivity analyses by considering a broad range of covariates to
address potential confounding, and excluding participants with events
that occurred during the first year of follow-up to mitigate reverse
causality. In addition, biological experiments are needed to explore
the mechanisms underlying sex difference in PA benefits.

In conclusion, we observed significant sex differences in asso-
ciations between accelerometer-measured PA with both CHD inci-
dence risk in the CHD-free population and all-cause mortality risk in
the established CHD population, based on a large-scale prospective
cohort. Females compared with males derived greater benefits from
the same level of PA engagement. Our findings might provide insights
into sex-specific tailored management in the prevention of CHD inci-
dence and mortality and advanced precision prevention using wearable
devices, and have potential to bridge the ‘gender gap’ by encouraging
female individuals to engagein PA.

Methods

This study was reported in accordance with the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
(Supplementary Table 15). All data field identifiers are listed in
Supplementary Table 16.

Study population

The UK Biobank is extensively described online (www.ukbiobank.
ac.uk). Briefly, over 500,000 participants aged 37-73 years were
recruited between 2006 and 2010 from 22 assessment centers
across England, Scotland and Wales. Each participant completed a
touch-screen questionnaire, underwent a nurse-led interview, had
physical measurements taken and provided biological samples®. This
study was conducted under UK Biobank application number 134551.
UK Biobank had ethical approval from the North West Multicenter
Research Ethics Committee (ref: 11/NW/0382). All participants gave
written informed consent.

Accelerometer-derived PA

Inthe PA sub-study conducted between February 2013 and December
2015, 103,695 participants provided the weekly wrist-worn triaxial
accelerometer (Axivity AX3) data®®*. We excluded individuals who
withdrew consent and had unreliable data size (field 90002), insuf-
ficient wear time (field 90015), poor calibration (field 90016, 90017)
andimplausible acceleration values (field 90012). We further excluded
individuals with missing covariates or who developed CHD during the
wearing period. Finally, 85,412 eligible participants were retained,
among which 80,243 without CHD were included inthe CHD incidence

study toanalyze the CHD incidencerisk, and 5,169 with established CHD
wereincludedinthe CHD mortality study for the mortality risk of CHD
patients; see details in Supplementary Figs.10 and 11.

Asdescribed previously, PA intensity was quantified as the average
vector magnitude over 5-s epochs recorded by a wrist-worn triaxial
accelerometer, expressed in milligravity (mg). Non-wear-time epochs
were identified as consecutive stationary episodes =60 min in which
allthree axes had standard deviation <13.0 mg, which wereimputed on
the basis of the average of similar time-of-day vector magnitude and
intensity distribution data points on different days®°. Furthermore,
MVPA duration was defined as the accumulation of 5-s epochs with
mean acceleration =100 mg (refs. 30-32). To minimize the artifact
misclassification of MVPA, we extracted MVPA data in bouts defined
as 5-min periods in which more than 80% of epochs met the inten-
sity threshold®**%, Additional measures derived from the quantified
MVPA duration were as follows: (1) adherence to the standard recom-
mendations of the AHA?, ESC> and WHO* (AHA/ESC/WHO standard:
>150 min week™); (2) adherence to the extended recommendation
of WHO (WHO extended: =300 min week™); (3) number of days the
average daily AHA/ESC/WHO standard (=150/7 min d™) was met and
(4) number of days the average daily WHO extended recommendation
(>300/7 min d!) was met.

Outcome ascertainment

For the CHD incidence study, the time-to-event outcome was defined
as following-up years from the end of wear time to incident CHD in
the CHD-free population, ascertained by the first occurrences of any
code mapped to three-character International Classification of Dis-
eases 10th Revision codes 120-125 from primary care, hospital records,
death registries and self-report fields. For the CHD mortality study,
the outcome was following-up years from the end of wear time to the
date of all-cause death in the established CHD population. Censoring
was defined as death, withdrawal, loss to follow-up or the end of the
follow-up period, whichever occurred first.

Covariates

Demographics including age, gender, center (England, Scotland or
Wales), ethnicity (white or other), education (college, university or
other), Townsend deprivation index and body mass index (BMI); life-
stylesincluding smoking (never, ever or current), alcohol (never, ever
or current), sleep duration (<7 h, 7-8 h or >8 h) and dietary health®**
(Supplementary Table 17); medical conditions including diabetes,
hypertension, dyslipidemia, cholesterol-lowering medication, blood
pressure medication, insulin therapy and Charlson comorbidity
index?; and activity intensity measured by average acceleration were
included as common covariates in the CHD incidence and mortality
study. We further adjusted the polygeneticrisk score of CHD inthe CHD
incidence study, and the use of CHD treatment medicines (antiplatelet
medication, antianginal medication) in the CHD mortality study.

Cox proportional hazard models

Models with follow-up time as the timescale. For participant i at
follow-up time ¢ (years from the end of accelerometer wear to the event
of interest or censoring), the hazard function was:

hi(t) = ho(t) exp(BX; + yC)
where X;represents the PA measures, C;represents the covariates and

hy(t)isthe baseline hazard at time t. Sex-specific associations were esti-
mated from separate Cox models for females (g;= 0) and males (g;=1):

hit18) = hog,(©) exp(BgXi + Vg, Ci)

where baseline hazard hqg(t) varies by sex, and g, denotes the
sex-specific effects.
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Interactions between sex and PA measures were tested using a
likelihood ratio test, comparing the following two models with or
without aninteraction term.

Model; : hy(8) = ho(t) exp(BiXi + Bagi + VCi + 0(X; x &)
Model, : hi(t) = ho(t) exp(BX; + Bygi + V' C)

Models with age as the timescale. When age was used as the time-
scale, the hazard for participantiat age a was:

hi(a) = ho(a) exp(BX; +yC)

where hy(a) represents the baseline hazard at age a. Participants
entered the risk set at their attained age and were followed until the
age at the event or censoring. Sex-specific associations and sex-PA
interactions were evaluated analogous to the follow-up time models.

Stratified Cox models by sex. In stratified Cox models®®, the baseline
hazard h, g (t) was allowed to differ by sex:

hi(t]8;) = ho g, () exp(BX; + yC)

To test sex difference, an interaction term between sex and PA
measures was included:

hi(t18;) = ho g () exp(BX; + yC; + 6(X; x 8))

For females (g; = 0), the effect of PA measures is simply 5. For males
(g;=1), the effect is § + 0. The significance of the sex difference was
assessed by likelihood ratio test, comparing models with or without
aninteraction term.

Model; : hi(t|8;) = hog () exp(BX; + VC; + 0(X; x &)
Model, : h(t|g;) = hog (&) exp(BX; +V'C)

Statistical analyses

Descriptive characteristics were presented as mean * s.d. or median
with interquartile range for quantitative variables as appropriate;
categorized variables were described by frequency (n) and proportion
(%). The cumulative risk of incident CHD across guideline-adherent
groups was illustrated using a cumulative incidence curve, and the
overall survival for patients with CHD across groups was shown using
aKaplan-Meier survival curve. Event proportions over the follow-up
period and event rates per 100,000 person-years were calculated
to describe the outcome characteristics across groups. Cox propor-
tional hazard models with follow-up time as timescale were used to
examine sex-specific associations of all PA measures with both CHD
incidence and mortality. HRs and 95% Cls were estimated from models
tomeasure relative instantaneous risk of the outcome, and we reported
the HR per 30 min week™ on MVPA duration. Nonlinear relationships
and dose-response associations between MVPA duration and CHD
outcomes were evaluated through restricted cubic splines by using
R package ‘rms’, with 0 min week™ of MVPA as the reference. Sex dif-
ferences in associations were assessed using likelihood ratio tests,
comparing models with and withoutinteraction terms between sex and
PAmeasures”. Given the distinct populations and different hypotheses
underlying the two outcomes, we applied false discovery rate (FDR)
correction using the Benjamini and Hochberg method*® for CHD inci-
dence and mortality separately to account for multiple comparisons
across five PA measures evaluated in each analysis.

We performed several sensitivity analyses. (1) We used Fine and
Gray subdistribution hazard models® to account for the competing risk
of deathinthe CHD incidence study; (2) we additionally fitted Cox pro-
portional hazard models with age as the timescale to further control for

potential confounding by age; (3) we used stratified Cox proportional
hazard models by sex to account for sex-specific baseline hazards™;
(4) we examined multiple PA measures with varying thresholds; (5) we
used four models with progressively increasing covariate adjustment,
and further conducted sensitivity analyses incorporating additional
comorbidities (chronic kidney disease and arthritis) as well as family
history (biological father, mother and siblings) of heart disease, to
account for potential confounders; (6) we excluded participants with
events occurring within the first year of the follow-up period to miti-
gate reverse causality; and (7) we imputed the missing data using the
multiple imputation method with the R package ‘mice™°.

Statistical analyses were conducted using Rv.4.3.3, and atwo-sided
P<0.05was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thisresearch was conducted using the UK Biobank resource (applica-
tionnumber 134551). The UK Biobank data are available upon applica-
tion to the UK Biobank (https://www.ukbiobank.ac.uk/). Source data
are provided with this paper.

Code availability
We used publicly available software for the analyses, and software used
isdescribed in Methods and Reporting Summary.
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and 2010 from 22 assessment centers across England, Scotland, and Wales. Each participant completed a touch-screen
questionnaire, underwent a nurse-led interview, had physical measurements taken, and provided biological samples.

In the physical activity sub-study conducted between February 2013 and December 2015, 103,695 participants provided the
weekly wrist-worn triaxial accelerometer (Axivity AX3) data.
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Among all 103,695 participants provided the weekly wrist-worn triaxial accelerometer (Axivity AX3) data, 83 withdraw consent, 4690 with
unreliable data size, 4463 with insufficient wear time, 157 with poor calibration, 206 with implausible acceleration values, 8675 with missing
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Data exclusions  The exclusion criteria were shown in Figure S10, we excluded individuals who withdrawn consent, with unreliable data size, insufficient wear
time, poor calibration, and implausible acceleration values. We further excluded individuals with missing covariates or who developed CHD
during the wearing period.

Replication This is a population-based cohort study using accelerometer-measured physical activity data. Due to the unavailability of suitable external
data sources, we have not yet replicated our findings in an independent cohort. However, we conducted a series of sensitivity analyses to
confirm the robustness of our results. Specifically, (a) we employed Fine and Gray subdistribution hazard models to account for the competing
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for potential confounding by age; (c) we employed stratified Cox proportional hazards models by sex to account for sex-specific baseline

=
Y]
=t
=
@
1®)
@)
=
o
=
®
o)
@)
=
=
(e}
wv
c
=
=
o
=<

€20z [udy




hazards; (d) we examined multiple PA measures with varying thresholds; (e) we employed four models with progressively increasing covariate
adjustment, and further conducted sensitivity analyses incorporating additional comorbidities (chronic kidney disease and arthritis) as well as
family history (biological father, mother, and siblings) of heart disease, to account for potential confounders; (f) we excluded participants with
events occurring within the first year of follow-up period to mitigate reverse causality; (g) we imputed the missing data using multiple
imputation method with the R package mice.
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